

Lecture 7:
Table Views

Developing Applications for iOS

Prof. Dr. Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● UITableView

● Creating Table View MVCs

● UITableViewDataSource

● UITableViewDelegate

UITableView

Very important class for displaying data in a table

● One-dimensional table.

● It’s a subclass of UIScrollView.

● Table can be a static or dynamic list of items.

● Lots and lots of customization via a dataSource protocol and a
delegate protocol.

● Very efficient even with very large sets of data.

UITableView

Displaying multi-dimensional tables

● Usually done via a UINavigationController containing
multiple MVC’s where View is UITableView.

● Or, via the UICollectionView from iOS 6.0. Collection views
provide the same general function as table views, except that a
collection view is able to support more layouts.

● Collection views support customizable layouts that can be used
to implement multi-column grids, circular layouts, and many
more.

Kinds of UITableViews

● Plain or Grouped.

● Static or Dynamic.

● Divided into sections or not.

● Different formats for each row in the table (including completely
customized).

UITableView

UITableViewStylePlain UITableViewStyleGrouped

UITableView

Plain Style

UITableView

Grouped Style

UITableView

No Sections Sections

Subtitle
UITableViewCellStyleSubtitle

Cell Type

Right Detail
UITableViewCellStyleValue1

Basic
UITableViewCellStyleDefault

Left Detail
UITableViewCellStyleValue2

Just drag out a UITableViewController in Interface Builder.

Creating Table View MVCs

UITableViewController is the iOS class used as the base class for MVC’s
that display UITableViews.

Creating Table View MVCs

UITableViewController is the iOS class used as the base class for MVC’s
that display UITableViews.

Creating Table View MVCs

Choose “New File ...” from the File menu to create a custom subclass of
UITableViewController.

Creating Table View MVCs

Choose “New File ...” from the File menu to create a custom subclass of
UITableViewController.

Be sure to set the superclass to UITableViewController.

Creating Table View MVCs

Choose “New File ...” from the File menu to create a custom subclass of
UITableViewController.

Be sure to set it in your storyboard too!

Creating Table View MVCs

You can customize both the look of the table view and its cells from Interface
Builder.

Click on the table view (not the table view controller)
to see its properties in the Inspector.

Creating Table View MVCs

You can customize both the look of the table view and its cells from Interface
Builder.

We will talk about the prototype for a
Dynamic Table View in a moment, but
for now, switch to a Static Table View.

Creating Table View MVCs

You can customize both the look of the table view and its cells from Interface
Builder.

This table view has the Plain style.
Let’s change it to Grouped.

Creating Table View MVCs

And you can change the look of each cell as well.

Click on a cell that you
want to change and set its
attributes in the Inspector.

Creating Table View MVCs

And you can change the look of each cell as well.

Change Style to Basic, Right Detail,
Left Detail, Subtitle and notice

the cell layout each time.

Creating Table View MVCs

And you can change the look of each cell as well.

Double-click to edit.

Creating Table View MVCs

And you can change the look of each cell as well.

Show disclosure accessory.
This should be on whenever
clicking on a row in the table

brings up another MVC.

Creating Table View MVCs

And you can change the look of each cell as well.

Show checkmark accessory.
This can be used to show

multiple selection in the table
(requires some other API use).

Creating Table View MVCs

And you can change the look of each cell as well.

Show detail disclosure accessory.
This is an active control.

Use it to show auxiliary info.
Clicking on the row should still
do the “main thing” for this row.

Creating Table View MVCs

User taps on the blue detail disclosure below?

This will be sent to your UITableViewController :
func tableView(_ tableView: UITableView,
 accessoryButtonTappedForRowWith indexPath: IndexPath)

Creating Table View MVCs

Notice that some cell styles can have an image.
You can set this in the code as well (more in a moment on this).

Let's set an image.

Creating Table View MVCs

Notice that some cell styles can have an image.
You can set this in the code as well (more in a moment on this).

Creating Table View MVCs

In the Custom style, you can drag out views and wire them up as outlets!

Dragging a button out.

Creating Table View MVCs

In the Custom style, you can drag out views and wire them up as outlets!

Creating Table View MVCs

In the Custom style, you can drag out views and wire them up as outlets!

CTRL + drag to associate an action to this button.

Creating Table View MVCs

In the Custom style, you can drag out views and wire them up as outlets!

Creating Table View MVCs

In the Custom style, you can drag out views and wire them up as outlets!

Creating Table View MVCs

Move the entry point arrow to the table view controller, and let's run the application.

Tap the detail disclosure accessory and
notice the log printed on the console.

Creating Table View MVCs

All of the above examples were “static” cells (setup in the storyboard). If you switch
to dynamic mode, then the cell you edit is a “prototype” for all cells in the list.

Switch to a Dynamic Table
with Prototype Cells.

Creating Table View MVCs

All of the above examples were “static” cells (setup in the storyboard). If you switch
to dynamic mode, then the cell you edit is a “prototype” for all cells in the list.

Now click on the Prototype to edit it.
All cells in this table will be like

this Prototype (though we’ll set the
contents to be different in code).

Creating Table View MVCs

All of the above examples were “static” cells (setup in the storyboard). If you switch
to dynamic mode, then the cell you edit is a “prototype” for all cells in the list.

Now click on the Prototype to edit it.
All cells in this table will be like

this Prototype (though we’ll set the
contents to be different in code).

You should see Table View Cell properties
appear in the Attributes Inspector.

Creating Table View MVCs

All of the above examples were “static” cells (setup in the storyboard). If you switch
to dynamic mode, then the cell you edit is a “prototype” for all cells in the list.

Let’s change the Prototype’s
style to be Subtitle, for example.

Creating Table View MVCs

All of the above examples were “static” cells (setup in the storyboard). If you switch
to dynamic mode, then the cell you edit is a “prototype” for all cells in the list.

The reuse identifier is a very important field!
It is the name that we will reference in

our code to identify this prototype
(more on this in a moment).

Creating Table View MVCs

All of the above examples were “static” cells (setup in the storyboard). If you switch
to dynamic mode, then the cell you edit is a “prototype” for all cells in the list.

Pick a name that is meaningful.
“My Table View Cell” would probably

not be that great. Something like
“Photo Description” (if this were a

list of photos) would be better.

UITableView Protocols

How do we connect to all this stuff in our code?

● A UITableView has two important properties: its delegate and
its dataSource.

● The delegate is used to control how the table is displayed.

● The dataSource provides the data that is displayed inside the
cells.

● Your UITableViewController is automatically set as the
UITableView’s delegate and dataSource.

● Your UITableViewController subclass will also have a
property that points to the UITableView:

var tableView: UITableView! { get set }

UITableView Protocols

● To be “dynamic”, we need to be the UITableView’s
dataSource.

● Three important methods in this protocol:

1. How many sections in the table?

2. How many rows in each section?

3. Give me a UIView to use to draw each cell at a given row in a
given section.

● Let’s cover the last one first.

UITableViewDataSource

How do we control what is drawn in each cell in a dynamic table?

● Each row is drawn by its own instance of UITableViewCell.

● Here is the UITableViewDataSource method to get that cell for a
given row in a given section.

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell

{

 return cell

}

In a static table, you do not need to implement this method
(though you can if you want to ignore what’s in the storyboard).

UITableViewDataSource

How do we control what is drawn in each cell in a dynamic table?

● Each row is drawn by its own instance of UITableViewCell.

● Here is the UITableViewDataSource method to get that cell for a
given row in a given section.

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell

{

 return cell

}

IndexPath is just an object with two important
properties for use with UITableView: row and section.

UITableViewDataSource

How do we control what is drawn in each cell in a dynamic table?

● Each row is drawn by its own instance of UITableViewCell.

● Here is the UITableViewDataSource method to get that cell for a
given row in a given section.

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell

{

 // get a cell to use (instance of UITableViewCell)

 // set properties on the cell to prepare it to display

 return cell

}

UITableViewDataSource

How do we control what is drawn in each cell in a dynamic table?

● Each row is drawn by its own instance of UITableViewCell.

● Here is the UITableViewDataSource method to get that cell for a
given row in a given section.

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell

{

 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell",

 for: indexPath)

 return cell

}

This MUST match what is in your storyboard if
you want to use the prototype you defined there!

UITableViewDataSource

How do we control what is drawn in each cell in a dynamic table?

● Each row is drawn by its own instance of UITableViewCell.

● Here is the UITableViewDataSource method to get that cell for a
given row in a given section.

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell

{

 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell",

 for: indexPath)

 return cell

}

The cells in the table are actually reused. When one goes off-screen, it gets
put into a “reuse pool”. The next time a cell is needed, one is grabbed from
the reuse pool if available. If none is available, one will be put into the reuse
pool if there’s a prototype in the storyboard. Otherwise the dequeue method

might return nil or generate an Error.

UITableViewDataSource

How do we control what is drawn in each cell in a dynamic table?

● Each row is drawn by its own instance of UITableViewCell.

● Here is the UITableViewDataSource method to get that cell for a
given row in a given section.

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell

{

 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell",

 for: indexPath)

 // set properties on the cell to prepare it to display

 return cell

}

UITableViewDataSource

How do we control what is drawn in each cell in a dynamic table?

● Each row is drawn by its own instance of UITableViewCell.

● Here is the UITableViewDataSource method to get that cell for a
given row in a given section.

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell

{

 let cell = tableView.dequeueReusableCell(withIdentifier: "Cell",

 for: indexPath)

 cell.textLabel?.text = self.data(forRow: indexPath.row,

 inSection: indexPath.section)

 return cell

}

There are obviously other things you can do in the cell
besides setting its text (detail text, image, accessory, etc).

UITableViewDataSource

How does a dynamic table know how many rows are there?

● And how many sections, too, of course?

func numberOfSections(in tableView: UITableView) -> Int

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int

● Number of sections is 1 by default. In other words, if you don’t
implement numberOfSections(in:), it will be 1.

● No default for number of rows in a section.

● This is a required method in this protocol (as is
tableView(:cellForRowAt:)).

What about a static table?

● Do not implement these dataSource methods for a static table.

● UITableViewController will take care of that for you.

UITableViewDataSource

There are a number of other methods in this protocol

● But we’re not going to cover all of them.

● They are mostly about getting the headers and footers for sections.

● And about dealing with editing the table (moving/deleting/inserting
rows).

UITableViewDataSource

There are a number of other methods in this protocol

● Let us continue with our demo and see, for example, how can we
delete rows from a Table View.

● We implement the following method to return true to allow editing.

override func tableView(_ tableView: UITableView,
 canEditRowAt indexPath: IndexPath) -> Bool
{
 /* Return false if you do not want the specified item
 * to be editable. */
 return true
}

UITableViewDataSource

There are a number of other methods in this protocol

● Let us continue with our demo and see, for example, how can we
delete rows from a Table View.

● We delete the row from the Table View and also from the Model by
implementing this method:

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath)
{
 if editingStyle == .delete
 {
 // Delete the row from the data source
 let deletedData = self.deleteData(atRow:indexPath.row,
 inSection: indexPath.section)
 print("We removed : \(deletedData)")

 tableView.deleteRows(at: [indexPath], with: .fade)
 }
}

UITableViewDelegate

● All of the above was the UITableView’s dataSource.

But UITableView has another protocol-driven delegate called its
delegate.

● The delegate controls how the UITableView is displayed.

Not what it displays (that’s the dataSource’s job).

● It is common for dataSource and delegate to be the same
object.

Usually the Controller of the MVC in which the UITableView is
part of the (or is the entire) View.

● The delegate also lets you observe what the table view is doing.

Especially responding to when the user selects a row.

We often will use segues when this happens, but we can also track
it directly.

Table View “Target/Action”

UITableViewDelegate method sent when row is selected

● This is sort of like table view “target/action”.

● You might use this to update a detail view in a split view if master
is a table view

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath)
{
 /* Go do something based on information about our
 * data structure corresponding to indexPath.row
 * in indexPath.section */

 // We usually want to deselect the row once you are done
 tableView.deselectRow(at: indexPath, animated: true)
}

Table View “Target/Action”

Lots and lots of other delegate methods

● will/did methods for both selecting and deselecting rows.

● Providing UIView objects to draw section headers and footers.

● Handling editing rows (moving them around with touch gestures).

● willBegin/didEnd notifications for editing.

● Copying/pasting rows.

Table View Segues

You can segue when a row is touched, just like from a button. Segues will call
prepare(for:sender:) with the chosen UITableViewCell as sender.

CTRL+drag from your cell to another View Controller
to create a segue in Storyboard.

Table View Segues

You can segue when a row is touched, just like from a button. Segues will call
prepare(for:sender:) with the chosen UITableViewCell as sender.

Chose your segue type. In a Navigation Controller,
you might want to create a Push segue.

Table View Segues

You can segue when a row is touched, just like from a button. Segues will call
prepare(for:sender:) with the chosen UITableViewCell as sender.

You might want to choose a segue identifier to
figure out which segue is triggered in your code!

Table View Segues

You might also want to embed your Table View Controller in a Navigation Controller.

Table View Segues

You might also want to embed your Table View Controller in a Navigation Controller.

Table View Segues

● You can tailor whatever data the MVC needs to whichever cell was
selected.

● This works whether dynamic or static.

override func prepare(for segue: UIStoryboardSegue,
 sender: Any?)
{
 if sender is UITableViewCell
 {
 let cell = sender as! UITableViewCell
 let indexPath = self.tableView.indexPath(for: cell)

 /* Prepare segue.destinationController to display
 * based on information about my data structure
 * corresponding to indexPath.row
 * in indexPath.section */
 }
}

UITableView

What if your Model changes?

● You can:

func reloadData()

● Causes the table view to call numberOfSections(in:) and
tableView(numberOfRowsInSection:) all over again and then
tableView(cellForRowAt:) on each visible cell.

● Relatively heavy weight obviously, but if your entire data structure
changes, that’s what you need.

● If only part of your Model changes, there are lighter-weight reloaders,
for example:

func reloadRows(at indexPaths: [IndexPath],

 with animation: UITableViewRowAnimation)

UITableView

There are dozens of other methods in UITableView

● Setting headers and footers for the entire table.

● Controlling the look (separator style and color, default row height,
etc).

● Getting cell information (cell for index path, index path for cell,
visible cells, etc). Scrolling to a row.

● Selection management (allows multiple selection, getting the
selected row, etc).

● Moving, inserting and deleting rows, etc.

Next Time

View Controller Lifecycle and UIKit:

● View Controller Lifecycle

● Image View

● Web View

● Scroll View

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

