

Lecture 4:
More Swift, Views

Developing Applications for iOS

Prof. Dr. Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

More Swift:

● Inheritance

● Initialization and Deinitialization

● Automatic Reference Counting

● Extensions

● Protocols

Views:

● View Hierarchy

● View Coordinates

Inheritance

● The example below defines a base class called Vehicle:

class Vehicle {
 var topSpeed = 0.0
 var description: String {
 return "can reach \(currentSpeed) km/h"
 }
 func makeNoise() {
 /* do nothing - an arbitrary vehicle
 doesn't necessarily make a noise */
 }
}

● The following example defines a subclass called Bicycle, that
inherits from the superclass Vehicle:

class Bicycle: Vehicle {
 var hasBasket = false
}

Inheritance

● The new Bicycle class automatically gains all of the
characteristics of Vehicle, such as its currentSpeed and
description properties and its makeNoise() method.

● In addition to the characteristics it inherits, the Bicycle class
defines a new stored property, hasBasket, with a default value
of false:

let bicycle = Bicycle()
bicycle.hasBasket = true
bicycle.topSpeed = 25.0
print("Bicycle: \(bicycle.description)")
// Bicycle: can reach 25.0 km/h

Overriding

● To override a characteristic that would otherwise be inherited,
you prefix your overriding definition with the override
keyword.

When necessary, you access the superclass version of a
method, property, or subscript by using the super prefix:

● An overridden method named someMethod() can reach the
superclass version by calling super.someMethod() within the
overriding method implementation.

● An overridden property called someProperty can access the
superclass version as super.someProperty within the
overriding getter or setter implementation.

● An overridden subscript for someIndex can access the
superclass version as super[someIndex] from within the
overriding subscript implementation.

Method Overriding

● The following example defines a new subclass of Vehicle
called Train, which overrides the makeNoise() method that
Train inherits from Vehicle:

class Train: Vehicle
{
 override func makeNoise()
 {
 print("Choo Choo")
 }
}

let train = Train()
train.makeNoise()
// Prints "Choo Choo"

Property Overriding

● You can provide a custom getter (and setter, if appropriate) to
override any inherited property.

● The stored or computed nature of an inherited property is not
known by a subclass; it only knows that the inherited property
has a certain name and type. You must always state both the
name and the type of the property you are overriding:

class Car: Vehicle {
 var gear = 1
 override var description: String {
 return super.description +
 " in gear \(gear)"
 }
}
let car = Car()
car.topSpeed = 212.0
car.gear = 5
print("Car: \(car.description)")
// Car: can reach 212.0 km/h in gear 5

Preventing Overrides

● You can prevent a method, property, or subscript from being
overridden by marking it as final. The final modifier must
be placed before the method, property, or subscript’s introducer
keyword, e.g. final var, final func, etc.

● You can mark an entire class as final by writing the final
modifier before the class keyword in its class definition (final
class). Any attempt to subclass a final class is reported as a
compile-time error.

Initialization

● Initializers are special methods that can be called to create a
new instance of a particular type.

● Initialization involves setting an initial value for each stored
property on that instance and performing any other setup that is
required before the new instance is ready for use.

● Classes and structures must set all of their stored properties to
an appropriate initial value by the time an instance of that class
or structure is created.

● In its simplest form, an initializer is like an instance method with
no parameters, written using the init keyword:

init() {
 // perform some initialization here
}

Initialization

● You can set the initial value of a stored property from within an
initializer, as shown below. Alternatively, specify a default
property value as part of the property’s declaration.

● You can provide initialization parameters as part of an
initializer’s definition:

struct Celsius {
 var temperature: Double
 init(_ celsius: Double) {
 temperature = celsius
 }
 init(fromKelvin kelvin: Double) {
 temperature = kelvin – 273.15
 }
}
let waterBoiling = Celsius(100.0)
// waterBoiling.temperature is 100.0
let waterFreezing = Celsius(fromKelvin: 273.15)
// waterFreezing.temperature is 0.0

Initialization

● Properties of an optional type are automatically initialized with a
value of nil.

● You can assign a value to a constant property at any point
during initialization, as long as it is set to a definite value by the
time initialization finishes:

class Question {
 let text: String
 var response: String?
 init(text: String) {
 self.text = text
 }
 func ask() {
 print(text)
 }
}
let q = Question(text: "Do you like popcorn?")
q.ask() // Prints "Do you like popcorn?"
q.response = "Yes, but only with a good movie."

Initialization

● Swift provides a default initializer for any structure or class that
provides default values for all of its properties and does not
provide at least one initializer itself:

class ShoppingListItem {
 var name: String?
 var quantity = 1
}
var item = ShoppingListItem()

● Structure types automatically receive a memberwise initializer if
they do not define any of their own custom initializers:

struct Size {
 var width = 0.0, height = 0.0
}
let twoByTwo = Size(width: 2.0, height: 2.0)

Initializer Delegation
● Initializers can call other initializers to perform part of an

instance’s initialization. This process, known as initializer
delegation, avoids duplicating code across multiple initializers:

struct Size {
 var width = 0.0, height = 0.0
}
struct Point {
 var x = 0.0, y = 0.0
}
struct Rect {
 var origin = Point()
 var size = Size()
 init(origin: Point, size: Size) {
 self.origin = origin
 self.size = size
 }
 init(center: Point, size: Size) {
 let x = center.x - (size.width / 2)
 let y = center.y - (size.height / 2)
 self.init(origin: Point(x: x, y: y), size: size)
 }
}

Class Inheritance and Initialization

● Designated initializers are the primary initializers for a class. A
designated initializer fully initializes all properties introduced by
that class and calls an appropriate superclass initializer to
continue the initialization process up the superclass chain.

● Convenience initializers are secondary, supporting initializers
for a class. You can define a convenience initializer to call a
designated initializer from the same class as the convenience
initializer with some of the designated initializer’s parameters
set to default values.

Class Inheritance and Initialization

Swift applies the following three rules for delegation calls
between initializers:

● A designated initializer must call a designated initializer from its
immediate superclass.

● A convenience initializer must call another initializer from the
same class.

● A convenience initializer must ultimately call a designated
initializer.

Class Inheritance and Initialization
● The following example shows designated initializers,

convenience initializers, and automatic initializer inheritance in
action:
class Food {
 var name: String
 init(name: String) {
 self.name = name
 }
 convenience init() {
 self.init(name: "[Unnamed]")
 }
}
class RecipeIngredient: Food {
 var quantity: Int
 init(name: String, quantity: Int) {
 self.quantity = quantity
 super.init(name: name)
 }
 override convenience init(name: String) {
 self.init(name: name, quantity: 1)
 }
}

Class Inheritance and Initialization
class ShoppingListItem: RecipeIngredient {
 var purchased = false
 var description: String {
 var output = "\(quantity) x \(name)"
 output += purchased ? " "✔ : " "✘
 return output
 }
}

var breakfastList = [
 ShoppingListItem(),
 ShoppingListItem(name: "Bacon"),
 ShoppingListItem(name: "Eggs", quantity: 6)]

breakfastList[0].name = "Orange juice"
breakfastList[0].purchased = true

for item in breakfastList {
 print(item.description)
}
// 1 x Orange juice ✔
// 1 x Bacon ✘
// 6 x Eggs ✘

Class Inheritance and Initialization

Failable Initializers
● A failable initializer creates an optional value of the type it

initializes. You write return nil within a failable initializer to
indicate a point at which initialization failure can be triggered:

class CartItem {
 let name: String
 let quantity: Int
 init?(name: String, quantity: Int) {
 if quantity < 1 { return nil }
 self.name = name
 self.quantity = quantity
 }
}

if let zeroShirts = CartItem(name: "shirt",
 quantity: 0) {
 print("Initialized \(zeroShirts.name) ")
} else {
 print("Unable to initialize zero shirts")
}
// Prints "Unable to initialize zero shirts"

Required Initializers
● Write the required modifier before the definition of a class

initializer to indicate that every subclass of the class must
implement that initializer:

class SomeClass {
 required init() {
 // initializer implementation goes here
 }
}

● You must also write the required modifier before every
subclass implementation of a required initializer, to indicate that
the requirement applies to further subclasses in the chain:

class SomeSubclass: SomeClass {
 required init() {
 // initializer implementation goes here}
 }
}

Set Default Property with a Closure

● If a stored property’s default value requires some customization
or setup, you can use a closure or global function to provide a
customized default value for that property.

● If you use a closure to initialize a property, remember that the
rest of the instance has not yet been initialized at the point that
the closure is executed.

● You cannot access any other property values from within your
closure, even if those properties have default values.

● You also cannot use the implicit self property, or call any of
the instance’s methods.

● The closure’s end curly brace must be followed by an empty
pair of parentheses. This tells Swift to execute the closure
immediately.

Set Default Property with a Closure
struct Chessboard {
 let colors: [Bool] = {
 var tempBoard = [Bool]()
 var isBlack = false
 for i in 1...8 {
 for j in 1...8 {
 tempBoard.append(isBlack)
 isBlack = !isBlack
 }
 isBlack = !isBlack
 }
 return tempBoard
 }()
}
let board = Chessboard()
for (i, cell) in board.colors.enumerated() {
 if i % 8 == 0 { print("") }
 if cell {
 print("⬜ ", terminator:"")
 } else {
 print("⬛ ", terminator:"")
 }
}

Deinitialization

● A deinitializer is called immediately before a class instance is
deallocated.

● You write deinitializers with the deinit keyword, similar to how
initializers are written with the init keyword.

● Deinitializers are only available on class types.

● The deinitializer does not take any parameters and is written
without parentheses:

deinit {
 // perform the deinitialization
}

Deinitialization

● A deinitializer is called immediately before a class instance is
deallocated.

● You write deinitializers with the deinit keyword, similar to how
initializers are written with the init keyword.

● Deinitializers are only available on class types.

● The deinitializer does not take any parameters and is written
without parentheses:

deinit {
 // perform the deinitialization
}

Automatic Reference Counting

● Swift uses Automatic Reference Counting (ARC) to track and
manage your app’s memory usage.

● To make sure that instances don’t disappear while they are still
needed, ARC tracks how many properties, constants, and
variables are currently referring to each class instance.

● ARC will not deallocate an instance as long as at least one
active reference to that instance still exists.

● To make this possible, whenever you assign a class instance to
a property, constant, or variable, that property, constant, or
variable makes a strong reference to the instance.

strong vs weak

● strong means “keep this in the heap until I don’t point to it
anymore”

I won’t point to it anymore if I set my pointer to it to nil.

Or if I myself am removed from the heap because no one has a
strong pointer to me!

● weak or unowned means “keep this as long as someone else
has a strong pointer to it”.

If it gets thrown out of the heap, set my pointer to it to nil
automatically.

● This is not garbage collection!

It’s way better.

It’s reference counting done automatically for you.

It happens at compile time not at run time!

strong vs weak

Obj1

strong vs weak

Obj1

Obj2

strong vs weak

Obj1

Obj2

Obj3

strong vs weak

Obj1

Obj2

Obj3

strong vs weak

Obj1

Obj2

Obj3

strong vs weak

Obj2

Obj3

strong vs weak

Obj2

Obj3

no strong reference to Obj2

strong vs weak

Obj3

?

strong vs weak

Obj3

nil

strong vs weak

Obj1

Obj2

Obj3

strong vs weak

Obj1

Obj2

Obj3

strong vs weak

Obj1

Obj2

Obj3

strong vs weak

Obj2

Obj3

strong vs weak

Obj1 Obj2

strong vs weak

Obj1 Obj2

strong vs weak

Obj1 Obj2

strong vs weak

Obj2

no strong reference to Obj2

strong vs weak

strong vs weak

Obj1 Obj2

strong vs weak

Obj1 Obj2

strong vs weak

Obj1 Obj2

strong vs weak

Obj1 Obj2

Nothing gets deallocated. This problem is called a
reference (or memory) cycle. It can be solved using weak
or unowned references.

Strong Reference Cycles

Weak References

Weak References
class Person {
 let name: String
 init(name: String) { self.name = name }
 var apartment: Apartment?
 deinit { print("\(name) is deinitialized") }
}
class Apartment {
 let unit: String
 init(unit: String) { self.unit = unit }
 weak var tenant: Person?
 deinit { print("Ap. \(unit) is deinitialized") }
}
var john: Person? = Person(name: "John Appleseed")
var unit4A: Apartment? = Apartment(unit: "4A")

john!.apartment = unit4A
unit4A!.tenant = john

john = nil
// Prints "John Appleseed is deinitialized"

unit4A = nil
// Prints "Ap. 4A is deinitialized"

Unowned References

Unowned References
class Customer {
 let name: String
 init(name: String) { self.name = name }
 var card: CreditCard?
 deinit { print("\(name) is deinitialized") }
}
class CreditCard {
 let number: UInt64
 unowned let customer: Person
 init(number: UInt64, customer: Customer) {
 self.number = number
 self.customer = customer
 }
 deinit { print("Credit card is deinitialized") }
}
var john: Customer?
john = Customer(name: "John Appleseed")
john!.card = CreditCard(number: 1234_5678_9012_3456,
 customer: john!)

john = nil
// Prints "John Appleseed is deinitialized"
// Prints "Ap. 4A is deinitialized"

Strong Reference Cycles for Closures

● A strong reference cycle can also occur if you assign a closure
to a property of a class instance, and the body of that closure
captures the instance.

● The capture might occur because the closure’s body accesses
a property of the instance, such as self.someProperty, or
because the closure calls a method on the instance, such as
self.someMethod().

● In either case, these accesses cause the closure to “capture”
self, creating a strong reference cycle.

● You resolve a strong reference cycle between a closure and a
class instance by defining a capture list as part of the closure’s
definition:

lazy var someClosure: () -> String = {
 [unowned self,
 weak delegate = self.delegate!] in
 // closure body goes here
}

Extensions

● Extensions add new functionality to an existing class, structure,
enumeration, or protocol type, including types for which one
does not have access to the original source code (known as
retroactive modeling):

extension Double
{
 var km: Double { return self * 1_000.0 }
 var m: Double { return self }
 var cm: Double { return self / 100.0 }
 var mm: Double { return self / 1_000.0 }
}

let aMarathon = 42.km + 195.m
print("A marathon is \(aMarathon) meters long")
// Prints "A marathon is 42195.0 meters long"

Protocols

● A protocol defines a blueprint of methods, properties, and other
requirements that suit a particular task or piece of functionality.

● The protocol can then be adopted by a class, structure, or
enumeration to provide an actual implementation of those
requirements.

● Any type that satisfies the requirements of a protocol is said to
conform to that protocol:

protocol HasArea {
 var area: Double { get }
}

class Circle: HasArea {
 let pi = 3.1415927
 var R: Double
 var area: Double { return pi * R * R }
 init(radius: Double) { self.R = radius }
}

Protocols

● You can use the is and as operators to check for protocol
conformance, and to cast to a specific protocol:

let objects: [Any] = [Circle(radius: 2.0),
 "string",
 127]
for object in objects {
 if let objectWithArea = object as? HasArea {
 print("Area is \(objectWithArea.area)")
 } else {
 print("Object doesn't have an area")
 }
}
// Area is 12.5663708
// Obj doesn't have an area
// Obj doesn't have an area

Protocols

The first use of protocols in iOS: delegates and data sources

● A delegate or dataSource is pretty much always defined as a
weak property, by the way:

weak var delegate: UIScrollViewDelegate? { get set }

● This assumes that the object serving as delegate will outlive the
object doing the delegating.

● Especially true in the case where the delegator is a View object
(e.g. UIScrollView) and the delegate is that View’s Controller.

● Controllers always create and clean up their View objects.

● Thus the Controller will always outlive its View objects.

● dataSource is just like a delegate, but, as the name implies,
we are delegating provision of data.

● Views commonly have a dataSource because Views cannot own
their data!

Views

● A view (i.e. UIView subclass) represents a rectangular area.

● It defines a coordinate space.

● Draws and handles events in that rectangle.

Hierarchical

● A view has only one superview:

var superview: UIView? { get }

● But can have many (or zero) subviews:

var subviews: [UIView] { get }

● Subview order (in subviews array) matters: those later in the
array are on top of those earlier.

Views

UIWindow

● The UIView at the top of the view hierarchy.

● Only have one UIWindow (generally) in an iOS application.

● It’s all about views, not windows.

● The hierarchy is most often constructed in Interface Builder
graphically.

● Even custom views are added to the view hierarchy using Interface
Builder (more on this later).

● But it can be done in code as well:

func addSubview(_ view: UIView)

func removeFromSuperview()

View Coordinates

CGFloat

● Just a floating point number, but we always use it for graphics.

CGPoint

● A struct with two CGFloats in it: x and y.

var p = CGPoint(x: 34.5, y: 22.0);
p.x += 20; // move right by 20 points

CGSize

● A struct with two CGFloats in it: width and height.

var s = CGSize(width: 100.0, height: 80.0);
s.height += 50; // make the size 50 points taller

CGRect

● A struct with a CGPoint origin and a CGSize size.

var r = CGRect(x: 10, y: 5, width: 300, height: 160)
r.size.height += 45; //make r 45 points taller
r.origin.x += 30; //move r to right 30 points

Coordinates

● Origin of a view’s coordinate system is upper left.

● Units are “points” (not pixels).

● Usually you don’t care about how many pixels per point are on
the screen you’re drawing on.

● Fonts and arcs and such automatically adjust to use higher
resolution.

● However, if you are drawing something detailed (like a graph),
you might want to know. There is a UIView property which will
tell you:

var contentScaleFactor: CGFloat { get set }

/* Returns pixels per point
 on the screen this view is on. */

● This property is not readonly, but you should basically pretend
that it is to avoid issues.

(0,0) increasing x

increas ing y

(400,38)

Coordinates

● Views have 3 properties related to their location and size.

var bounds: CGRect { get set }

● This is your view’s internal drawing space’s origin and size.

● The bounds property is what you use inside your view’s own
implementation.

● It is up to your implementation as to how to interpret the
meaning of bounds.origin.

var center: CGPoint { get set }

● The center of your view in your superview’s coordinate
space.

var frame: CGRect { get set }

● A rectangle in your superview’s coordinate space which
entirely contains your view’s bounds.size.

(0,0) increasing x

increas ing y

(400,38)

Coordinates

Use frame and center to position the view in the hierarchy

● These are used by superview, never inside your UIView
subclass’s implementation.

● You might think frame.size is always equal to bounds.size,
but you would be wrong because views can be rotated (and
scaled and translated too).

● Views are rarely rotated, but don’t misuse frame or center by
assuming that.

Coordinates

Use frame and center to position the view in the hierarchy

● Let's take a look at the following example:

(300,225)

(140,65)
320

320

(0,0)
23020

0

View A

View B

Coordinates

Use frame and center to position the view in the hierarchy

● Let's take a look at the following example:

View B’s bounds = ((0,0),(230,200))

View B’s frame = ((140,65),(320,320))

View B’s center = (300,225)

View B’s middle in its own coordinate space is:

(bounds.size.width / 2 + bounds.origin.x,
bounds.size.height / 2 + bounds.origin.y)

which equals (115,100) in this case.

Creating Views

● Most often you create views in Interface Builder.

● Of course, Interface Builder’s palette knows nothing about a
custom view class you might create.

● In that case, you drag out a generic UIView from the palette and
use the Inspector to change the class of the UIView to your
custom class.

● How do you create a UIView in code (i.e. not in Interface
Builder)?

Just call init(frame:), the UIView’s designated initializer.

Creating Views

● Example:

let rect = CGRect(x: 20, y: 20,
 width: 50, height: 30)
let label = UILabel(frame:rect)
label.text = "Hello"
self.view.addSubview(label)
// (self.view is a Controller’s top-level view)

Next Time

Views, Drawing and Gestures:

● Drawing Paths

● Drawing Text

● Drawing Images

● Error Handling

● Gesture Recognizers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

