

Lecture 3:
A Tour of Swift

Developing applications for iOS

Prof. PhD. Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● Strings and Characters

● Collection Types

● Control Flow

● Functions and Closures

● Classes, Structures, Enumerations

● Properties and Methods

Strings and Characters

● A string is a series of characters, such as "hello, world".
Swift strings are represented by the String type. The
contents of a String can be accessed in various ways,
including as a collection of Character values.

● Swift’s String type is a value type. If you create a new
String value, that String value is copied when it is passed
to a function or method, or when it is assigned to a constant
or variable.

Strings and Characters

● To create an empty String value as the starting point for
building a longer string, either assign an empty string literal to
a variable, or initialize a new String instance with initializer
syntax:

var emptyString1 = "" // empty string literal
var emptyString2 = String() // initializer

● Find out whether a String value is empty by checking its
Boolean isEmpty property:

if emptyString.isEmpty
{
 print("Nothing to see here")
}

Strings and Characters

● You can access the individual Character values for a
String by iterating over the string with a for-in loop:

for c in "Donald Duck!"
{
 print(c)
}

● String values can be constructed by passing an array of
Character values as an argument to its initializer:

let chars: [Character] = ["D","u","c","k","!"]
let duck = String(chars)
print(duck)

Strings and Characters

● String values can be added together (or concatenated) with
the addition operator to create a new String value:

let firstName = "Donald"
let lastName = " Duck"
var name = firstName + lastName

● You can append a Character value to a String variable
with the String type’s append() method:

let exclamationMark: Character = "!"
name.append(exclamationMark)

● String interpolation is a way to construct a new String value
from a mix of constants, variables, literals, and expressions:

let x = 3
let message = "\(x) times 2 is \(x * 2)"
// message is "3 times 2 is 6"

Strings and Characters

● To retrieve a count of the Character values in a string, use
the count property of the string:

var w = "cafe"
var n = w.count
print("\(w) has \(n) characters")
// Prints "cafe has 4 characters"

● String has an associated index type, String.Index, which
corresponds to the position of each Character in the string.
You can use subscript syntax to access the Character at a
particular String index:

let w = "Butterfly!"
w[w.startIndex] // B
w[w.index(before: w.endIndex)] // !
w[w.index(after: w.startIndex)] // u
let index = w.index(w.startIndex, offsetBy: 7)
w[index] // l

Strings and Characters

● Attempting to access an index outside of a string’s range or a
Character at an index outside of a string’s range will trigger a
runtime error:

w[w.endIndex] // Error
w.index(after: w.endIndex) // Error

● Use the indices property to access all of the indices of
individual characters in a string:

for index in w.indices
{
 print("\(w[index]) ", terminator: "")
}
// Prints "B u t t e r f l y ! "

Strings and Characters

● To insert a single character into a string at a specified index,
use the insert(_:at:) method:

var w = "fly"
w.insert("!", at: w.endIndex)
// w now equals "fly!"

● To insert the contents of another string at a specified index,
use the insert(contentsOf:at:) method:

w.insert(contentsOf: "Butter",
 at: w.startIndex)
// w now equals "Butterfly!"

Strings and Characters

● To remove a single character from a string at a specified index,
use the remove(at:) method:

w.remove(at: w.index(before: w.endIndex))
// w now equals "Butterfly"

● To remove a substring at a specified range, use the
removeSubrange(_:) method:

let last = w.index(w.startIndex, offsetBy: 6)
let range = w.startIndex..<last
w.removeSubrange(range)
// w now equals "fly"

Strings and Characters
● String and character equality is checked with the “equal to”

operator (==) and the “not equal to” operator (!=):

let quote = "I'll be back!"
let sameQuote = "I'll be back!"
if quote == sameQuote
{
 print("These two quotes are equal!")
}

● To check whether a string has a particular string prefix or
suffix, call the string’s hasPrefix(_:) and
hasSuffix(_:) methods, both of which take a single
argument of type String and return a Boolean value:

let duck = "Donald Duck!"
if duck.hasPrefix("Donald")
{
 print("Meet Donald, my favorite duck!")
}

Collection Types
● Swift provides three primary collection types, known as

arrays, sets, and dictionaries, for storing collections of values.
● Arrays are ordered collections of values.
● Sets are unordered collections of unique values.
● Dictionaries are unordered collections of key-value pairs.

● Arrays, sets, and dictionaries in Swift are always clear about
the types of values and keys that they can store. This means
that you cannot insert a value of the wrong type into a
collection by mistake.

Arrays

● The type of a Swift array is written as Array<Element>,
where Element is the type of values the array is allowed to
store. You can also write the type of an array in shorthand
form as [Element] (preferred). You can create an empty
array of a certain type using initializer syntax:

var v = [Int]()
print("v contains \(v.count) items.")
// Prints "v contains 0 items."

● Swift’s Array type also provides an initializer for creating an
array of a certain size with all of its values set to the same
default value:

var zeros = Array(repeating: 0.0, count: 3)
/* zeros is of type [Double], and equals
[0.0, 0.0, 0.0] */

Arrays
● You can create a new array by adding together two existing

arrays with compatible types with the addition operator:

var ones = Array(repeating: 1.0, count: 3)
/* ones is of type [Double], and equals [1.0,
1.0, 1.0] */

var v = zeros + ones
/* v is inferred as [Double], and equals
[0.0, 0.0, 0.0, 1.0, 1.0, 1.0] */

● You can also initialize an array with an array literal:

var v = ["Eggs", "Milk", "Apples"]

● To find out the number of items in an array, check its read-
only count property:

print("My list contains \(v.count) items.")
// Prints "My list contains 3 items."

Arrays

● Use the Boolean isEmpty property as a shortcut for checking
whether the count property is equal to 0:

if v.isEmpty {
 print("The shopping list is empty.")
} else {
 print("The shopping list is not empty.")
}
// Prints "The shopping list is not empty."

● You can add a new item to the end of an array by calling the
array’s append(_:) method:

v.append("Flour")

● Alternatively, append an array of one or more compatible
items with the addition assignment operator (+=):

v += ["Chocolate", "Cheese", "Butter"]
// v now contains 7 items

Arrays

● Retrieve a value from the array by using subscript syntax:

var firstItem = v[0]
// firstItem is equal to "Eggs"

● You can use subscript syntax to change an existing value at a
given index:

v[0] = "Six eggs"
// the first item is now equal to "Six eggs"

● You can also use subscript syntax to change a range of
values at once, even if the replacement set of values has a
different length than the range you are replacing:

v[4...6] = ["Bananas", "Grapes"]
// v now contains 6 items

Arrays

● To insert an item into the array at a specified index, call the
array’s insert(_:at:) method:

v.insert("Maple Syrup", at: 0)

● Similarly, you remove an item from the array with the
remove(at:) method:

let mapleSyrup = v.remove(at: 0)

● If you want to remove the final item from an array, use the
removeLast() method:

let apples = v.removeLast()
// v now contains 5 items

Arrays

● You can iterate over the entire set of values in an array with
the for-in loop:

for item in v
{
 print(item)
}

● If you need the integer index of each item as well as its value,
use the enumerated() method to iterate over the array
instead. For each item in the array, the enumerated()
method returns a tuple composed of an integer and the item:

for (index, value) in v.enumerated()
{
 print("Item \(index + 1): \(value)")
}

Sets

● A type must be hashable in order to be stored in a set, i.e. the
type must provide a way to compute a hash value for itself.

● A hash value is an Int value that is the same for all objects
that compare equally, such that if a == b, it follows that
a.hashValue == b.hashValue.

● All of Swift’s basic types (such as String, Int, Double, and
Bool) are hashable by default.

● The type of a Swift set is written as Set<Element>, where
Element is the type that the set is allowed to store. Unlike
arrays, sets do not have an equivalent shorthand form:

var letters = Set<Character>()

● You can add a new item into a set by calling the set’s
insert(_:) method:

letters.insert("a")

Sets

● You can also initialize a set with an array literal, as a
shorthand way to write one or more values as a set collection.
A set type cannot be inferred from an array literal alone, so
the type Set must be explicitly declared:

var s: Set = ["Shoe", "Shirt", "Hat"]

● You can use count property to find out the number of items
in a set, and isEmpty property as a shortcut for checking
whether the count property is equal to 0.

● You can remove an item from a set by calling the set’s
remove(_:) method. Alternatively, all items in a set can be
removed with its removeAll() method:

if let removed = s.remove("Hat") {
 print("I took my \(removed) off.")
} else {
 print("I don't wear hats.")
}

Sets

● To check whether a set contains a particular item, use the
contains(_:) method:

if s.contains("Hat") {
 print("I am wearing a hat.")
}

● You can iterate over the values in a set with a for-in loop:

for fashionItem in s {
 print("\(fashionItem)")
}

● Swift’s Set type does not have a defined ordering. To iterate
over the values of a set in a specific order, use the
sorted() method:

for fashionItem in s.sorted() {
 print("\(genre)")
}

Sets

● You can efficiently perform fundamental set operations, such
as intersection, union, subtracting and symmetric difference:

let odd: Set = [1, 3, 5, 7, 9]
let even: Set = [0, 2, 4, 6, 8]
let prime: Set = [2, 3, 5, 7]
let morePrime: Set = [2, 3, 5, 7, 11, 13, 17]

odd.union(even).sorted()
// [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

odd.intersection(prime).sorted()
// [3, 5, 7]

odd.subtracting(prime).sorted()
// [1, 9]

odd.symmetricDifference(prime).sorted()
// [1, 2, 9]

Sets
● Use the “is equal” operator (==) to determine whether two

sets contain all of the same values.
● Use the isSubset(of:) method to determine whether all of

the values of a set are contained in the specified set:

prime.isSubset(of: morePrime) // true

● Use the isSuperset(of:) method to determine whether a
set contains all of the values in a specified set:

morePrime.isSuperset(of: prime) // true

● Use isStrictSubset(of:) / isStrictSuperset(of:)
methods to determine whether a set is a subset or superset,
but not equal to, a specified set.

● Use the isDisjoint(with:) method to determine whether
two sets have any values in common:

odd.isDisjoint(with: even) // true

Dictionaries

● The type of a Swift dictionary is written in full as
Dictionary<Key, Value>, where Key is the type of value
that can be used as a dictionary key, and Value is the type of
value that the dictionary stores for those keys.

● You can also write the type of a dictionary in shorthand form
as [Key: Value] (preferred).

● As with arrays, you can create an empty Dictionary of a
certain type by using initializer syntax:

var errorCodes = [Int: String]()

● You can also initialize a dictionary with a dictionary literal:

var airports = ["DXB": "Dubai",
 "OTP": "Otopeni",
 "LAX": "Los Angeles"]

Dictionaries

● You can use count property to find out the number of items
in a dictionary, and isEmpty property as a shortcut for
checking whether the count property is equal to 0.

● You can add a new item to a dictionary or change the value of
an item with subscript syntax:

airports["LHR"] = "London Heathrow"

● You can use subscript syntax to remove a key-value pair from
a dictionary by assigning a value of nil for that key:

airports["LHR"] = nil

Dictionaries

● You can also use subscript syntax to retrieve a value from the
dictionary for a particular key. If the dictionary contains a
value for the requested key, the subscript returns an optional
value containing the existing value for that key. Otherwise, the
subscript returns nil:

if let name = airports["DXB"] {
 print("We are flying to \(name).")
} else {
 print("No tickets for that airport.")
}
// Prints "We are flying to Dubai."

● You can iterate over the key-value pairs in a dictionary with a
for-in loop:

for (code, name) in airports {
 print("\(code): \(name)")
}

Dictionaries

● You can also retrieve an iterable collection of a dictionary’s
keys or values by accessing its keys and values properties:

for code in airports.keys {
 print("Airport code: \(code)")
}

for name in airports.values {
 print("Airport name: \(airportName)")
}

● If you need to use a dictionary’s keys or values as Array
instances, initialize a new array with the keys or values
property:

let codes = [String](airports.keys)
let names = [String](airports.values)

Control Flow

Swift provides a variety of control flow statements:

● while loops to perform a task multiple times

● if, guard, and switch statements to execute different code
branches based on certain conditions

● break and continue to transfer the flow of execution to
another point in your code

● for-in loop that makes it easy to iterate over arrays,
dictionaries, ranges, strings, and other sequences

For Loops

● This example prints the first few entries in the five-times table:

for index in 1...5 {
 print("\(index) times 5 is \(index * 5)")
}

● If you don’t need each value from a sequence, you can ignore
the values by using an underscore in place of a variable
name:

let base = 2
let power = 10
var answer = 1
for _ in 1...power {
 answer *= base
}
print("\(base)^\(power) = \(answer)")
// Prints "2^10 = 1024"

While Loops

● A while loop starts by evaluating a single condition. If the
condition is true, a set of statements is repeated until the
condition becomes false:

var i = 2
while i <= 10 {
 print("\(i) is an odd number")
 i += 2
}

● The repeat-while loop performs a single pass through the loop
block first, before considering the loop’s condition. It then
continues to repeat the loop until the condition is false:

var i = 2
repeat {
 print("\(i) is an odd number")
 i += 2
} while i <= 10

Conditional Statements

● You use the if statement to evaluate simple conditions with
only a few possible outcomes:

temperature = 32
if temperature <= 22 {
 print("It's not yet summer here.")
} else {
 print("Great news! Summer has arrived!")
}

● You use a guard statement to require that a condition must be
true in order for the code after the guard statement to be
executed. Unlike an if statement, a guard statement always
has an else clause. The code inside the else clause is
executed if the condition is not true:

guard let name = person["name"] else {
 return
}

Switch Statement

● A switch statement considers a value and compares it against
several possible matching patterns. It then executes an
appropriate block of code, based on the first pattern that
matches successfully:

let studentCount = 36
var s: String?
switch studentCount {
 case 0:
 s = "no"
 case 1..<10:
 s = "a few"
 case 10..<20:
 s = "several"
 default:
 s = "many"
}
print("There are \(s!) students here.")

Switch Statement

● You can use tuples to test multiple values in the same switch
statement. A switch case can use a where clause to check
for additional conditions:

let p = (1, -1)
switch p {
 case let (x, y) where x == y:
 print("\(p) is on the line x == y")
 case let (x, y) where x == -y:
 print("\(p) is on the line x == -y")
 case (_, _):
 print("\(p) is an arbitrary point")
}
// Prints "(1, -1) is on the line x == -y"

Functions
● When you define a function, you can optionally define one or

more parameters. You can also optionally define a return
type. You can use a tuple as the return type for a function to
return multiple values:

func minMax(x: [Int]) -> (min: Int, max: Int)
{
 var min = x[0]
 var max = x[0]
 for value in x[1..<x.count] {
 if value < min {
 min = value
 }
 if value > max {
 max = value
 }
 }
 return (min, max)
}
let x = minMax(x: [8, -6, 2, 3, 71])
print("min = \(x.min) and max = \(x.max)")

Functions

● Each function parameter has both an argument label and a
parameter name. The argument label is used when calling the
function. By default, parameters use their parameter name as
their argument label:

func greet(person: String,
 from town: String) -> String
{
 return "Hello, \(person) from \(town)!"
}

print(greet(person: "John", from: "Boston"))
// Prints "Hello, John from Boston!"

Functions

● A variadic parameter accepts zero or more values of a
specified type. The values passed to a variadic parameter are
made available within the function’s body as an array of the
appropriate type:

func mean(_ numbers: Double...) -> Double
{
 var total: Double = 0
 for number in numbers
 {
 total += number
 }
 return total / Double(numbers.count)
}

mean(1.0, 2.0, 3.0, 4.0)

Functions
● Trying to change the value of a parameter from within the

body of the function results in a compile-time error. If you
want modify a parameter’s value and persist its value after the
function call, define it as an in-out parameter instead:

func add(_ amount: Int = 1, to x: inout Int)
{
 x += amount
}

var amount = 3
var x = 7
add(amount, to: &x)
add(to: &x)
print("x is now \(x)")
// Prints "x is now 11"

● You can define a default value for any parameter by assigning
a value in the declaration. If a default value is defined, you
can omit that parameter when calling the function.

Functions Types
● Every function has a specific function type, made up of the

parameter types and the return type of the function. The type
of these two functions is (Int, Int) -> Int:

func add(_ a: Int, _ b: Int) -> Int {
 return a + b
}
func multiply(_ a: Int, _ b: Int) -> Int {
 return a * b
}

● You can now define a constant or variable to be of a function
type and assign an appropriate function to that variable:

var mathFunction: (Int, Int) -> Int = add

● You can now call the assigned function with the name
mathFunction :

print("Result: \(mathFunction(2, 3))")

Nested Functions
● You can define functions inside the bodies of other functions,

known as nested functions. You can also use a function type
as the return type of another function. An enclosing function
can also return one of its nested functions to allow the nested
function to be used in another scope:

func stepFcn(goBackward: Bool) -> (Int) -> Int
{
 func forward(x: Int) -> Int { return x + 1 }
 func backward(x: Int) -> Int { return x - 1 }
 return goBackward ? backward : forward
}

var x = -4
let moveToZero = stepFcn(goBackward: x > 0)
// moveToZero now refers to the forward() function
while x != 0
{
 print("\(x)...")
 x = moveToZero(x)
}

Closures

● Closures are self-contained blocks of functionality that can be
passed around and used in your code.

● Closures in Swift are similar to blocks in C and Objective-C.

● Closures can capture and store references to any constants
and variables from the context in which they are defined.

Closures

Functions are actually special cases of closures. Closures
take one of three forms:

● Global functions are closures that have a name and do not
capture any values.

● Nested functions are closures that have a name and can
capture values from their enclosing function.

● Closure expressions are unnamed closures written in a
lightweight syntax that can capture values from their
surrounding context.

Closures

● Swift’s standard library provides a method called
sorted(by:), which sorts an array of values of a known
type, based on the output of a sorting closure that you
provide. In the following example, we are sorting an array of
String values, and so the sorting closure needs to be a
function of type (String, String) -> Bool:

let names = ["Radu", "Alex", "Eva", "Dan"]

● func backward(_ s1: String,
 _ s2: String) -> Bool {

 return s1 > s2
}

var reversed = names.sorted(by: backward)
● // reversed is ["Radu", "Eva", "Dan", "Alex"]

Closures
● The example below shows a closure expression version of the
backward(_:_:) function from the previous slide:

reversed = names.sorted(by: {
 (s1: String, s2: String) -> Bool in
 return s1 > s2
})

● Because the sorting closure is passed as an argument to a
method, Swift can infer the types of its parameters and the
type of the value it returns. Because all of the types can be
inferred, the return arrow (->) and the parentheses around the
names of the parameters can also be omitted:

reversed = names.sorted(by: { s1, s2 in
 return s1 > s2
})

Closures

● Single-expression closures can implicitly return the result of
their single expression by omitting the return keyword from
their declaration, as in this version of the previous example:

reversed = names.sorted(by: { s1, s2 in s1 >
s2 })

● Swift automatically provides shorthand argument names to
inline closures, which can be used to refer to the values of the
closure’s arguments by the names $0, $1, $2, and so on.

● If you use these shorthand argument names within your
closure expression, you can omit the closure’s argument list
from its definition. The in keyword can also be omitted:

reversed = names.sorted(by: { $0 > $1 })

Closures

● If you need to pass a closure expression to a function as the
function’s final argument and the closure expression is long, it
can be useful to write it as a trailing closure instead:

func someFunction(closure: () -> Void) {
 // function body goes here
}

// Calling without using a trailing closure:

someFunction(closure: {
 // closure's body goes here
})

// Calling with a trailing closure instead:

someFunction() {
 // trailing closure's body goes here
}

Closures

● The string-sorting closure from the previous slides can be
written outside of the sorted(by:) method’s parentheses as
a trailing closure:

reversed = names.sorted() { $0 > $1 }

● If a closure expression is provided as the function or method’s
only argument and you provide that expression as a trailing
closure, you do not need to write a pair of parentheses after
the function:

reversed = names.sorted { $0 > $1 }

Closures

● A closure can capture constants and variables from the
surrounding context in which it is defined. The closure can
then refer to and modify the values of those constants and
variables from within its body, even if the original scope that
defined the constants and variables no longer exists:

func makeAdder(amount: Int) -> () -> Int {

 var runningTotal = 0
 func adder() -> Int {
 runningTotal += amount
 return runningTotal
 }
 return adder
}

let addTen = makeAdder(amount: 10)
addTen() // returns a value of 10
addTen() // returns a value of 20

Enumerations

● An enumeration defines a common type for a group of related
values and enables you to work with those values in a type-
safe way within your code

Enumerations in Swift adopt many features traditionally
supported only by classes, such as:

● Computed properties to provide additional information about
the enumeration’s current value

● Instance methods to provide functionality related to the values
the enumeration represents

● Initializers to provide an initial case value
● Can be extended to expand their functionality beyond their

original implementation
● Can conform to protocols to provide standard functionality

Enumerations

● You introduce enumerations with the enum keyword and place
their entire definition within a pair of braces:

enum CompassPoint {
 case north
 case south
 case east
 case west
}

var directionToHead = CompassPoint.west

● The type of directionToHead is inferred when it is
initialized with one of the possible values of CompassPoint.
Once the variable is declared as a CompassPoint, you can
set it to a different CompassPoint value using a shorter dot
syntax:

directionToHead = .east

Enumerations

● When you’re working with enumerations that store integer or
string raw values, you don’t have to explicitly assign a raw
value for each case. When integers are used for raw values,
the implicit value for each case is one more than the previous
case. If the first case doesn’t have a value set, its value is 0:

enum Planet: Int {
 case mercury = 1, venus, earth, mars,
 jupiter, saturn, uranus, neptune
}

let x = Planet.earth.rawValue
print("Earth is the \(x)rd planet from Sun")
// Prints "Earth is the 3rd planet from Sun"

Classes and Structures

Classes and structures in Swift have many things in common.
Both can:

● Define properties to store values
● Define methods to provide functionality
● Define subscripts to provide access to their values using

subscript syntax
● Define initializers to set up their initial state
● Be extended to expand their functionality beyond a default

implementation
● Conform to protocols to provide standard functionality of a

certain kind

Classes and Structures

Classes have additional capabilities that structures do not:
● Inheritance enables one class to inherit the characteristics of

another
● Type casting enables you to check and interpret the type of a

class instance at runtime
● Deinitializers enable an instance of a class to free up any

resources it has assigned
● Reference counting allows more than one reference to a class

instance

Classes and Structures

● Classes and structures have a similar definition syntax. You
introduce classes with the class keyword and structures with
the struct keyword. Both place their entire definition within a
pair of braces:

struct Resolution
{
 var width = 0
 var height = 0
}

class VideoMode
{
 var resolution = Resolution()
 var interlaced = false
 var frameRate = 0.0
 var name: String?
}

Classes and Structures

● The syntax for creating instances is very similar for both
structures and classes:

let res = Resolution()
let mode = VideoMode()

● You can access the properties of an instance using dot
syntax:

print("The width of res is \(res.width)")
// Prints "The width of res is 0"

● You can also use dot syntax to assign a new value to a
variable property:

mode.resolution.width = 1280
print("Width is \(mode.resolution.width)")
// Prints "Width is 1280"

Classes and Structures

● All structures have an automatically-generated memberwise
initializer, which you can use to initialize the member
properties of new structure instances. Initial values for the
properties of the new instance can be passed to the
memberwise initializer by name:

let hd = Resolution(width: 1280, height: 720)

● All structures and enumerations are value types in Swift. This
means that any structure and enumeration instances you
create are always copied when they are passed around in
your code:

var cinema = hd
cinema.width = 2048
print("hd is still \(hd.width) pixels wide")
// Prints "hd is still 1280 pixels wide"

Classes and Structures

● Classes are reference types. Unlike value types, reference
types are not copied when they are assigned to a variable or
constant, or when they are passed to a function:

let m1 = VideoMode()
m1.resolution = hd
m1.interlaced = true
m1.name = "720i"
m1.frameRate = 25.0

let m2 = m1
m2.frameRate = 30.0

print("Frame rate of m1 is \(m1.frameRate)")
 // Prints "Frame rate of m1 is 30.0"

Properties

● Stored properties store constant and variable values as part
of an instance.

● Stored properties are provided only by classes and structures.

● Computed properties calculate (rather than store) a value.

● Computed properties are provided by classes, structures, and
enumerations.

Stored Properties

● Stored properties can be either variable stored properties or
constant stored properties:

struct FixedLengthRange {
 var first: Int
 let length: Int
}

var r = FixedLengthRange(first: 0, length: 3)
// r represents values 0, 1, and 2
r.first = 6
// r now represents values 6, 7, and 8

● If you declare r as a constant (with the let keyword), it is not
possible to change its variable property:

let r = FixedLengthRange(first: 0, length: 3)
r.first = 6 // this will report an error

Stored Properties

● If you declare r as a constant (with the let keyword), it is not
possible to change its variable property:

let r = FixedLengthRange(first: 0, length: 3)
r.first = 6 // this will report an error

● Tis behavior is due to structures being value types. When an
instance of a value type is marked as a constant, so are all of
its properties.

● The same is not true for classes, which are reference types. If
you assign an instance of a reference type to a constant, you
can still change that instance’s variable properties.

Lazy Stored Properties
● A lazy stored property is a property whose initial value is not

calculated until the first time it is used. You indicate a lazy
stored property by writing the lazy modifier before its
declaration:

class DataImporter {

 var fileName = "data.txt"
 // Importing functionality here ...
}

class DataManager {
 lazy var importer = DataImporter()
 var data = [String]()
 // Data management functionality here ...
}

 let manager = DataManager()
 manager.data.append("Some data")
 /* The DataImporter instance for the importer

property has not yet been created. */

Computed Properties
struct Point {
 var x = 0.0, y = 0.0
}
struct Size {
 var w = 0.0, h = 0.0
}
struct Rect {
 var origin = Point()
 var size = Size()
 var center: Point {
 get {
 let x = origin.x + (size.w / 2)
 let y = origin.y + (size.h / 2)
 return Point(x: x, y: y)
 }
 }
}
var sq = Rect(origin: Point(x: 0.0, y: 0.0),
 size: Size(w: 10.0, h: 10.0))
print("Center is at \(sq.center)")
// Prints "Center is at Point(x:5.0, y:5.0)"

Computed Properties
● A computed property with a getter but no setter is known as a

read-only computed property.
● When declaring a setter, it is not mandatory to define a name

for the new value to be set. In this case, newValue is used as
default name:

struct Rect {
 var origin = Point()
 var size = Size()
 var center: Point {
 get {
 let x = origin.x + (size.w / 2)
 let y = origin.y + (size.h / 2)
 return Point(x: x, y: y)
 }
 set {
 origin.x = newValue.x - (size.w / 2)
 origin.y = newValue.y - (size.h / 2)
 }
 }
}

Property Observers

● Property observers observe and respond to changes in a
property’s value. Property observers are called every time a
property’s value is set:

class StepCounter {
 var steps: Int = 0 {
 willSet(newSteps) {
 print("Will set steps to \(newSteps)")
 }
 didSet {
 print("Added \(steps – oldValue) steps")
 }
 }
}

let stepCounter = StepCounter()
stepCounter.steps = 50
// Will set steps to 50
// Added 50 steps

Type Properties

● You define type properties with the static keyword. For
computed type properties for class types, you can use the
class keyword instead to allow subclasses to override the
superclass’s implementation:

class SomeClass {
 static var storedTypeProp = "Some value"
 static var computedTypeProp1: Int {
 return 27
 }
 class var computedTypeProp2: Int {
 return 107
 }
}

print(SomeClass.computedTypeProp1)
// Prints "27"

Methods

● Methods are functions that are associated with a particular type.

● Classes, structures, and enumerations can all define instance
methods, which encapsulate specific tasks and functionality for
working with an instance of a given type.

● Classes, structures, and enumerations can also define type
methods, which are associated with the type itself.

Methods

● You use the self property to refer to the current instance within
its own instance methods:

struct Point {
 var x = 0.0, y = 0.0
 func isToTheRightOf(x: Double) -> Bool {
 return self.x > x
 }
}

let P = Point(x: 4.0, y: 5.0)
if P.isToTheRightOf(x: 1.0) {
 print("P is to the right of x == 1")
}
// Prints "P is to the right of x == 1"

● Without the self prefix, Swift would assume that both uses of x
referred to the method parameter called x.

Methods
● You can modify Value Types from within instance methods by

placing the mutating keyword before the func keyword for
that method:

struct Point {
 var x = 0.0, y = 0.0
 mutating func moveBy(x deltaX: Double,
 y deltaY: Double) {
 x += deltaX
 y += deltaY
 }
}

var P = Point(x: 1.0, y: 1.0)
P.moveBy(x: 2.0, y: 3.0)
print("P is now at (\(P.x), \(P.y))")
// Prints "P is now at (3.0, 4.0)"

● Mutating methods can assign an entirely new instance to the
implicit self property.

Class Methods

● You indicate type methods by writing the static keyword
before the method’s func keyword.

● Classes may also use the class keyword to allow subclasses
to override the superclass’s implementation of that method:

class SomeClass {
 class func someTypeMethod() {

 print(self)
 }
}

SomeClass.someTypeMethod()
// Prints "SomeClass"

Subscripts

● You write subscript definitions with the subscript keyword,
and specify one or more input parameters and a return type, in
the same way as instance methods:

struct TimesTable
{
 let multiplier: Int

 subscript(index: Int) -> Int
 {
 return multiplier * index
 }
}

let threeTimesTable = TimesTable(multiplier: 3)
print("6 x 3 = \(threeTimesTable[6])")
// Prints "6 x 3 = 18"

Next Time

More Swift:

● Inheritance

● Initialization and Deinitialization

● Automatic Reference Counting

● Extensions

● Protocols

Views:

● View Hierarchy

● View Coordinates

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

