

Lecture 2:
MVC Design Concept

Developing Applications for iOS

Prof. PhD. Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● MVC Design Concept

● Introduction to Swift

MVC Design Model

Controller

Model View

MVC Design Model

● Divide objects in your program into 3 camps.

Controller

Model View

MVC Design Model

● Model = What your application is (but not how it is
displayed)

Controller

Model View

MVC Design Model

● Controller = How your Model is presented to the user
(UI logic)

Controller

Model View

MVC Design Model

● View = How your application is displayed.

Controller

Model View

MVC Design Model

● It's all about managing communication between
camps.

Controller

Model View

MVC Design Model

● Controllers can always talk directly to their Model.

Controller

Model View

MVC Design Model

● Controllers can always talk directly to their View.

Controller

Model View

outlet

MVC Design Model

● The Model and View should never speak to each
other.

Controller

Model View

outlet

MVC Design Model

● Can the View speak to its Controller?

Controller

Model View

outlet

?

MVC Design Model

● Sort of. Communication is blind and structured.

Controller

Model View

outlet

MVC Design Model

● The Controller can drop a target on itself.

Controller

Model View

outlet

targettarget

MVC Design Model

● Then hand out an action to the View.

Controller

Model View

outlet

targettarget

action

MVC Design Model

● The View sends the action when things happen in the
UI.

Controller

Model View

outlet

targettarget

action

MVC Design Model

● Sometimes the View needs to synchronize with the
Controller.

Controller

Model View

outlet

targettarget

action

will

should did

MVC Design Model

● The Controller sets itself as the View's delegate.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

MVC Design Model

● The delegate is set via a protocol (it's blind to the
View class).

Controller

Model View

outlet

targettarget

action
delegate

will

should did

MVC Design Model

● Views do not own the data they display.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

MVC Design Model

● If needed, they have a protocol to acquire the data.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

MVC Design Model

● Controllers are almost always that data source (not
the Model).

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

MVC Design Model

● Controllers interpret/format Model information for the
View.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

MVC Design Model

● Can the Model talk directly to the Controller?

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

?

MVC Design Model

● No. The Model is (should be) UI independent.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

MVC Design Model

● But what if the Model has information to update or
something?

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

MVC Design Model

● It uses a “radio station” - broadcast mechanism.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

Notification
& KVO

MVC Design Model

● Controllers (or other Models) “tune in” to interesting
stuff.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

Notification
& KVO

MVC Design Model

● Now combine MVC groups to make complicated
programs.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

Notification
& KVO

Introduction to Swift

● The Swift language is a simple and concise computer
language designed to enable sophisticated object
oriented programming.

● Swift is a modern OOP language that provides syntax
for defining classes and methods, as well as other
constructs that promote dynamic extension of
classes.

● If you have programmed with object-oriented
languages before, you can learn the basic syntax of
Swift from the following slides.

Introduction to Swift

● The traditional object-oriented concepts, such as
encapsulation, inheritance, and polymorphism, are all
present in Swift.

● These important aspects are going to be discussed in
detail in the next lecture.

● We are now going to discuss the basic concepts.

Introduction to Swift

We will talk about:

● Code Organization

● Classes

● Strong Typing

● Constants and Variables

● Basic Types, Tuples

● Optionals

● Functions Declaration and Calling

Code Organization

● As many other OOP languages, (most of) the Swift
code is organized in classes, structures and
enumerations.

● Additionally, you can use (recommended) extensions
and protocols.

● Adding extensions is an extremely powerful
mechanism that allows you to add new functionality to
existing classes, structures or enumeration types
without having to subclass. That means you can add
your own methods to Cocoa classes such as UIView
and UIImage!

● Protocols are used for delegation, a mechanism in
which one object acts on behalf of, or in coordination
with, another object.

Code Organization

● It usually recommended to define a single class in a
*.swift file.

● However, you can define multiple classes, extensions
and protocols in a single file. These can also be
encapsulated in other classes. Depends on what is
needed!

● Unlike Objective-C, you do not have to define header
files and source files to separate public declarations
from the implementation.

Code Organization

● When you want to include frameworks in your source
code, you typically use an import directive.

● This is like #include, except that it makes sure that
the same file is never included more than once.

● Not necessary to import your own classes when you
need to use them, just the frameworks.

Code Organization

● To add a single line comment use: // my comment

● To add a multiple line comment use: /* my very
long comment */

● Use these special comments comment your code (will
be surfaced in the Xcode source navigator):

// MARK: - (dash inserts a line)

// TODO:

// FIXME:

● Always use MARK. If you don’t use the source
navigator to browse through your classes’ methods,
you’re doing it wrong!

Code Organization

Classes in Swift

● Classes in Swift provide the basic construct for
encapsulating some data with the actions that
operate on that data.

● An object is a runtime instance of a class, and
contains its own in-memory copy of the instance
variables declared by that class and pointers to the
methods of the class.

● The definition and the implementation of a class in
Swift are specified in a single file, although
extensions are allowed in different files.

● The class declaration (in a .swift file) includes
instance variables, methods associated with the class
and their implementation.

 Classes in Swift

● Here is an example
where Point inherits
from the Cocoa’s base
class.

● The class declaration
begins with the class
compiler directive.

Declaring Constants and Variables

● Constants and variables must be declared before
they are used. You declare constants with the let
keyword and variables with the var keyword:

let secondsPerMinute = 60

var secondsSinceMidnight = 54311

secondsPerMinute = 100 // ERROR!

● You can declare multiple constants or multiple
variables on a single line, separated by commas:

var x = 0.0, y = 0.0, z = 0.0

● You can provide a type annotation when you declare
a constant or variable:

var red, green,,blue: Double

Constants and Variables

● Constant and variable names can contain almost any
character, including Unicode characters:

let π = 3.14159

let = "dogcow"

● You can print the current value of a constant or variable
with the print function:

print()

● Swift uses string interpolation to include the name of a
constant or variable as a placeholder in a longer string:

print("One minute has \(secondsPerMinute)
 seconds.")

Strong Typing

● Swift is a type-safe language that supports strong
typing for variables containing objects.

● When the type cannot be implicitly inferred, strongly
typed variables must include the class name in the
variable type declaration.

● If you want to use generally-typed variables, you can
declare them as Any.

Strong Typing

● The following example shows equivalent instance
declarations of strongly typed variables:

// long form initializer method call

let twenty = Int.init(20)

// uses initializer from Double type

let twenty = Int.init(20.0)

// shorthand for initializer method

let twenty = Int(20)

// uses the initializer from UInt type

let twenty = Int(UInt(20))

// type annotation syntax

let twenty: Int = 20

// inferred type syntax

let twenty = 20

Integers

● Swift provides signed and unsigned integers in 8, 16,
32, and 64 bit forms:

UInt8, UInt16, UInt32, UInt64, UInt

Int8, Int16, Int32, Int64, Int

● Unless you need to work with a specific size of integer,
always use Int or UInt for integer values.

● You can access the minimum and maximum values of
each integer type with its min and max properties:

let minValue = UInt8.min

// minValue is equal to 0

let maxValue = UInt8.max

// maxValue is equal to 255

Floating-Point Numbers

● Swift provides two signed floating-point number types:

Double represents a 64-bit floating-point number.

Float represents a 32-bit floating-point number.

● Conversions between integer and floating-point
numeric types must be made explicit:

let three = 3

let pointOneFour = 0.14

let pi = Double(three) + pointOneFour

let integerPi = Int(pi)

Numeric Literals

● All of these integer literals have a decimal value of 17:

let decimalInteger = 17

let binaryInteger = 0b10001

// 17 in binary notation

let octalInteger = 0o21

// 17 in octal notation

let hexadecimalInteger = 0x11

// 17 in hexadecimal notation

● For decimal numbers with an exponent:

let x = 1.24e2 // means 124.0

let y = 1.24e-2 // means 0.0124

Type Aliases

● Type aliases define an alternative name for an existing
type:

typealias AudioSample = UInt16

● Once you define a type alias, you can use the alias
anywhere you might use the original name:

var maxAmplitudeFound = AudioSample.min

// maxAmplitudeFound is now 0

Booleans

● Swift has a basic Boolean type, called Bool:

let orangesAreOrange = true

let bananasAreBlue = false

● Boolean values are particularly useful when you work
with conditional statements such as the if statement:

if bananasAreBlue {

 print("Maybe on Mars!")

} else {

 print("Actually, no!")

}

Booleans

● Swift’s type safety prevents non-Boolean values from
being substituted for Bool. The following example
reports a compile-time error:

let i = 1

if i {

 // compiler error

}

● However, the alternative example below is valid:

if i == 1 {

 // compiles successfully

}

Tuples

● Tuples group multiple values into a single compound
value. The values within a tuple can be of any different
type. This tuple describes an HTTP status code:

let http404Error = (404, "Not Found")

● You can decompose a tuple’s contents into separate
constants or variables, which you then access as usual:

let (code, message) = http404Error

print("The status code is \(code)")

// Prints "The status code is 404"

● You may ignore parts of the tuple with an underscore:

let (_, message) = http404Error

print("The status message is \(message)")

Tuples

● Alternatively, access the individual element values in a
tuple using index numbers starting at zero:

print("Status code is \(http404Error.0)")

● You can name the individual elements in a tuple when
the tuple is defined:

let status = (code: 200, message: "OK")

● If you name the elements in a tuple, you can use the
element names to access the values of those elements:

print("Status code is \(status.code)")

// Prints "The status code is 200"

Tuples

● You can compare tuples that have the same number of
values, as long as each of the values in the tuple can
be compared. For example, both Int and String can
be compared, which means tuples of the type (Int,
String) can be compared. In contrast, Bool can’t be
compared, which means tuples that contain a Boolean
value can’t be compared:

(3, "apple") < (3, "bird")

/* true because 3 is equal to 3, and
"apple" is less than "bird" */

(4, "dog") == (4, "dog")

/* true because 4 is equal to 4, and
"dog" is equal to "dog" */

Optionals

● You use optionals in situations where a value may be
absent (nil). If there is a value, you can unwrap the
optional to access that value:

let possibleNumber = "123"

let x = Int(possibleNumber)

// x inferred as Int? or "optional Int"

● Forced unwrapping means adding an exclamation
mark (!) to the end of the optional’s name:

if x != nil {

 print("x is \(x!)")

}

Optionals

● You use optional binding to find out whether an
optional contains a value, and if so, to make that value
available as a temporary constant or variable:

if let x = Int(possibleNumber) {

 print("String converted to \(x)")

} else {

 print("\String was not converted")

}

● You can include more optional bindings and Boolean
conditions in a single if statement:

● if let x = Int("7"), let y = Int("42") {

 print("\(x) < \(y)")

}

Optionals

● If you define an optional variable without providing a
default value, the variable is automatically set to nil
for you:

var text: String?

// text is automatically set to nil

● Sometimes it is clear from a program’s structure that an
optional will always have a value, after that value is first
set. These kinds of optionals are declared as implicitly
unwrapped optionals:

let a: String! = "Implicitly unwrapped."

let b: String = a

● If an implicitly unwrapped optional is nil and you try to
access its wrapped value, you’ll trigger a runtime error!

Functions Declaration

● A class in Swift can declare two types of methods:
instance methods and class methods.

Function
 name

Class method
identifier Return type

Parameter types
Parameter namesFunction body

between brackets

Function
keyword

Functions and Calling

● The declaration is preceded by the func keyword.

● The function's name is then specified:

distanceBetween

● The input parameters are given in parentheses.

● The return type comes after ->.

● When you want to call a method, you must specify
the input parameter labels:

Functions and Calling

● Swift lets you nest calls. Thus, if you had another
object called myObject that had methods for
accessing an array object and an object to be
appended, you could do it in a single line of code:

myObject.someArray.append(anObject)

● Here is another example:

Next Time

A Tour of Swift:

● Strings and Characters

● Collection Types

● Control Flow

● Functions and Closures

● Classes, Structures, Enumerations

● Properties and Methods

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

