

Lab 6:
 Nearby Deals (2 of 6)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Nearby Deals

Description:

We are going to build a new application that will show deals from
nearby restaurants and bars. The application will display the deals in
two modes: a list view (using a UITableViewController) and a
map view (using a MKMapView). We will request the deals from a
server (www.geoadsplus.com to be more precise). We will use XML
to communicate with this server. Note that XML and JSON are
standard ways of communicating with a server.

We have to pass the device location (latitude, longitude) to the server
so that it gives us nearby deals. Thus, we will need to use Location
Services to determine the device location.

We will offer details about our deals. We are going to use a navigation
controller to navigate between the list View and the details View.

http://www.geoadsplus.com/

Task 1

Task: Add the CoreLocation framework to your project.

1. Launch Xcode and go to “File > Open” and select the Xcode project
(.xcodeproj) inside the “NearbyDeals(1of6)” folder. You can also
double-click on the .xcodeproj file to open it in Xcode.

2. Run the application in iOS Simulator and take a look to remember
what was done last time.

3. Stop running the application.

4. Open Project Navigator and follow the steps in the next slides to add
the CoreLocation framework to your project.

Click on the NearbyDeals
project in Project Navigator.

Note that a target specifies a product to build and contains the instructions for building
the product from a set of files in a project or workspace. A target defines a single
product; it organizes the source files and instructions for processing those source

files into the build system required to build that product. Projects can contain one or
more targets, each of which produces one product. The instructions for building a

product take the form of build settings and build phases, which you can examine and
edit in the Xcode project editor. A target inherits the project build settings, but you can
override any of the project settings by specifying different settings at the target level.

Select the NearbyDeals target.

Then expand Link Binary With Libraries.

This is were you link the frameworks to your target. Note
that the UIKit and Foundation frameworks are already
linked here. Every iOS application uses these two very

important frameworks. Usually we might want to add new
frameworks to our application as we expand its functionality.

Select the Build Phases tab right here.

Click here to add the
CoreLocation framework.

This is a list of all iOS internal libraries. You can
either pick a library from the list or use the search
bar. Let's scroll dow the CoreLocation framework

and select it.

To add external libraries you
would have to use this button.

The frameworks available in your
project are also visible here.

Click Add to link the CoreLocation
library to our target.

Note the CoreLocation
framework was added here.

And here. Let's move it to the
Frameworks group with the

other frameworks.

That's great! We can now #import this
framework whenever we want to use it.

Task 1

Task: Add the CoreLocation framework to your project.

5. Select the MainStoryboard.storyboard file.

6. Hide Project Navigator and let's #import the CoreLocation
framework inside the DealsTableViewController.

We need this framework because we will declare a method soon that
has a CLLocationCoordinate2D argument. This is a C struct
from the CoreLocation library that contains two properties:
latitude and longitude.

This is how you import the framework.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

1. Before creating a request from code, we should check out the
GeoAds+ API in a web browser. Let's open the API documentation
first: http://www.geoadsplus.com/api_documentation in Safari.

2. Note that you need an app_key to make a request to the GeoAds+
API. We will use this one: fe008041973b66760017.

3. Let's try the following request in Safari and see what we get:

http://www.geoadsplus.com/ads.xml?
app_key=fe008041973b66760017&latitude=44.25&longitude=26.06
&limit=20&category=Restaurants,Bars

4. Note that you should right-click in Safari and select View Source to
see the XML returned by the GeoAds+ API.

http://www.geoadsplus.com/api_documentation
http://www.geoadsplus.com/ads.xml

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

5. Let's return to our project in Xcode. We will declare two constant
strings for the GeoAds+ URL and for the app key.

6. Select DealsTableViewController.m in Assistant Editor.

7. Right after the #import declare a static NSString that holds
this URL: http://www.geoadsplus.com/ads.xml.

8. In a similar way, declare another static NSString to hold our app
key: fe008041973b66760017.

The next screenshot shows you how to declare these string constants.

http://www.geoadsplus.com/ads.xml

Prefixing constants with “k” is a common
coding convention. This will help you

to easily identify constants in your code.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

9. Next, we are going to make an asynchronous request to the
GeoAds+ API. For this, we implement a method that starts the
request by using an NSURLConnection object. While this request
is processed by the server it can send some messages to its
delegate.

We will declare a private @property that will contain the stream of
bytes (NSData) that the delegate receives through the
NSURLConnection object. Name this property webData. Because
we (the Controller) have the only reference to it, we use the strong
storage type.

10. Synthesize this property and prefix its instance variable with
underscore.

The next screenshot shows you how to do these steps.

We actually declare this property to be mutable
because we build the stream as the request

is being processed.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

11. Let's declare and implement the method that makes the request for
nearby deals to the GeoAds+ API.

Open DealsTableViewController.h in Assistant Editor.

12. Declare the requestDealsNearLocation:limit: method that
has two arguments: the location (GPS coordinates) of the device
and the maximum number of deals to be returned by the server.

This method will return a BOOL value that indicates whether the request
was successfully started or not.

The next screenshot shows you how to do declare this method.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

13. Go back to DealsTableViewController.m in Assistant Editor.

14. Implement the requestDealsNearLocation:limit: method
after the nearbyDeals getter.

The next screenshots guide you through the implementation of this
method.

This method should check first if the previous request
did finish loading (or did fail). We might want to make
another request to refresh our data with new nearby
deals. In this case, the previous request should finish
loading before starting a new request. We have to be

careful with asynchronous requests.

We make the URL string using the coordinate
and limit arguments of this method.

Then we make an NSURL object using the string.

We create an NSURLMutableRequest
instance for the URL, specifying the
cache access policy and the timeout

interval (in seconds) for the connection.

NSURLMutableRequest objects accept both standard
 HTTP methods: GET and POST. In our case we only
need to GET some data from the server. If we would

have to upload (write) data on a server we should use
POST instead.

Next, we create the connection with the request and
start loading the data. In order to download the contents

of a URL, an application needs to provide a delegate
object. The download starts immediately upon receiving

 the initWithRequest:delegate: message.

Our delegate (this Controller) will have a chance to know about
the state of the connection by implementing the following delegate methods:
connection:didReceiveResponse:, connection:didReceiveData:,
connection:didFailWithError: and connectionDidFinishLoading:.

Create the NSMutableData to hold the received
data. This creates an empty data object.

Return YES since we have successfully
opened a connection to the server.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

15. We should continue by implementing the methods for the
NSURLConnection delegate. Let's mark the section of code that
will contain these delegate methods using the #pragma mark
compiler directive.

16. Name this section “NSURLConnection load callbacks”.

The next screenshot shows where to add this section.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

17. When the server has provided sufficient data to create an
NSURLResponse object, the delegate receives the following
message: connection:didReceiveResponse:.

You should be prepared for your delegate to receive the
connection:didReceiveResponse: message multiple times for
a single connection. This message can be sent due to server
redirects, or in rare cases multi-part MIME documents. Each time
the delegate receives the connection:didReceiveResponse:
message, it should reset any progress indication and discard all
previously received data.

The next screenshot shows how to implement this callback method.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

18. Our Table View Controller (the delegate) is periodically sent
connection:didReceiveData: messages as the data is
received. The delegate implementation is responsible for storing the
newly received data.

We should append the new data to webData in this method.

Note that you can also use this method to provide an indication of the
connection’s progress to the user. This is useful when we transfer
large files from/to a server.

The next screenshot shows how to implement this callback method.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

19. If an error is encountered during the download, the delegate
receives a connection:didFailWithError: message. The
NSError object passed as the parameter specifies the details of
the error. After our delegate object receives the
connection:didFailWithError: message, it receives no
further delegate messages for the specified connection.

We set webData to nil in this method because we have finished the
request (without success).

20. It would be nice to let the user know that we have a connection
problem. A standard way to present ad-hoc messages to the user is
to use an UIAlertView object. We are going to build an alert
programmatically that will display an error message on the screen. It
will have a dismiss button too.

The next screenshot shows how to implement this callback method.

Use the show method to display an
alert view once it is configured.

We can set a delegate that conforms
to the UIAlertViewDelegate protocol,
but we don't need this right now. We just

want to show the alert with the error
message and let the user dismiss it

by pressing the “Ok” button.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

21. Finally, if the connection succeeds in downloading the request, the
delegate receives the connectionDidFinishLoading:
message. The delegate will receive no further messages for the
connection.

Let's transform the received bytes into a string and print it with an
NSLog for now.

This represents the simplest implementation of a client using
NSURLConnection. Additional delegate methods provide the ability
to customize the handling of server redirects, authorization requests
and caching of the response.

The next screenshot shows how to implement this callback method.

22. Run the application in iOS Simulator and check out the console to
see if it gets the XML from the server.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants.

22. We want to make this request right when our Table View appears
on screen. Note the each View Controller has a lifecycle that starts
with its creation. We will discuss this later in detail, but for now you
should know that you (the Controller) get notified when your View
appears on screen.

If we want to do something custom (such as making a request to a
server) when it appears on screen we should implement the
viewDidAppear: method.

We are going to make a request from a fake location that we create
using the CLLocationCoordinate2DMake helper C function.
Later we will use the GPS location of the device.

The next screenshot shows how to implement this callback method.

Note that we have to send the
viewDidAppear: message to super

before we do anything else here.

Task 2

Task: Create a request using the GeoAds+ API that will return deals
from nearby Bars or Restaurants..

23. Run the application in iOS Simulator and check out the console to
see if it gets the XML from the server.

24. Stop running the application.

25. Disconnect you computer from the Internet (just pull out the cable)
and lets see what happens with our request.

Run the application again. This time it should display the error
message.

26. Stop running the application.

27. Don't forget to put back your Internet cable.

Task 3

Task: Add a new class to your project with helper methods for XML
parsing.

1. Usually we use the NSXMLParser class to parse XML documents.
This class parses XML files in an event-driven manner as it notifies
its delegate about the items (elements, attributes) that it encounters
as it processes an XML document. This is very efficient when we
want to parse large XML files, but in our case we need something
simple. Thus, we are going to parse the XML file ourself and build an
NSArray with the nearby deals.

Actually, we are going to add SimpleXMLParser.h/m to our project. This
class already contains some helper class methods for parsing XML
documents.

Open Project Navigator.

2. Copy and paste SimpleXMLParser.h and SimpleXMLParser.m to the
NearbyDeals folder within your project folder. Remember that you
can right-click on the NearbyDeals group in Project Navigator and
select “Show in Finder”.

Task 3

Task: Add a new class to your project with helper methods for XML
parsing.

3. Right-click on the NearbyDeals group in Project Navigator and select
“Add files to NearbyDeals...”.

4. Select the SimpleXMLParser.h and SimpleXMLParser.m from the
NearbyDeals folder and click Add.

5. We should add some functionality to the SimpleXMLParser class
in order to parse the XML with nearby deals. It's good if we do this in
another tab. Go to “File > New > Tab” in Xcode menu or use the
CMD+T shortcut keys to create the new tab.

6. Open SimpleXMLParser.m on the left-side of the Editor, and
SimpleXMLParser.h on the right-side. The header file should
automatically appear on the right-side if you are on automatic mode.

7. Take a look at the implementation of the following methods:
convertSpecialCharactersToUnicodeInXML:
contentOfFirstTagWithName:fromXML:

Task 3

Task: Add a new class to your project with helper methods for XML
parsing.

8. Let's declare and implement another class method in the
SimpleXMLParser that will parse the XML document with nearby
deals received from the server.

It will build an array of deals. Each deal will be represented by an
NSDictionary that will store the deal's title, subtitle, description,
etc.

Follow the steps from the next slides to implement this method.

Declare the dealArrayFromXML: class
method that receives an XML string and
 returns a pointer to an NSArray object.

The first thing that we need to do
is to convert the special characters
like & or ’ to unicode

characters.

We separate the XML document into XML strings
so that each XML string will contain no more than
one deal. The last XML string is the only one that

 contains no deals.

If we have less then 2 XML components it means
we have no deals. We return nil in this case.

The last XML component doesn't
contain a deal. It can be removed.

We start building the array of deals. We are going to add
deals one by one into this array so it needs to be mutable.

We set the initial capacity to the exact number of deals
that we are going to add. The initial capacity it is just a

performance hint. It can be extended later on if needed.

Let's extract the deal data from each XML component.
We do this using a for-in structure. Note that we convert
the objects from the components array to NSString

because we know they are NSString objects.

We use the contentOfFirstTagWithName: helper
method to extract the content of the tags we are interested

in. We want to configure our Table View Cells using the title,
subtitle and the thumbnail photo. We are going to use the

latitude and longitude to present the deals on the map later.
We display the deal details in a UIWebView that opens

the deal URL. This is all the information we need.

We create an NSDictionary that will
hold all the information about our deal.

Next, let's add the NSDictionary that
contains our deal info to the deals array.

And return the array of deals not
before casting it to its non-mutable

 superclass (NSArray).

Task 4

Task: Use the SimpleXMLParser class methods to parse the XML
with nearby deals and display them in your Table View.

1. Switch to the MainStoryboard.storyboard tab in Xcode.

2. Open DealsTableViewController.h in Assistant Editor.

3. We want to use the SimpleXMLParser dealsArrayFromXML:
class method to obtain an NSArray with the nearby deals from the
XML file we received from the server.

The first thing to do is to #import the SimpleXMLParser header file
into our Table View Controller so that we can use its methods.

The next screenshot show you how to #import this header file.

Task 4

Task: Use the SimpleXMLParser class methods to parse the XML
with nearby deals and display them in your Table View.

4. Open DealsTableViewController.m in Assistant Editor.

5. Scroll to the connectionDidFinishLoading: method we
implemented earlier. Comment the NSLog that prints the XML
document to the console.

6. Parse the receivedXML using the dealsArrayFromXML: class
method and store the result into the nearbyDeals Model.

The next screenshots show you how to perform these steps.

Note this section that we created
using the #pragma mark directive.

Select the method we want
to change from here.

You may use this NSLog for later
debugging. Let's comment it for now.

Set the nearbyDeals array
like this. Note that you have

to use the setter here.

Task 4

Task: Use the SimpleXMLParser class methods to parse the XML
with nearby deals and display them in your Table View.

7. We set the nearbyDeals @property when we receive the XML
from the server. We no longer need the lazy instantiation
mechanism for nearbyDeals because we instantiate it in the
connectionDidFinishLoading: method. Thus, we can delete
the getter implementation.

The next screenshot shows the code that needs to be deleted.

Delete the implementation
of the nearbyDeals getter.

Task 4

Task: Use the SimpleXMLParser class methods to parse the XML
with nearby deals and display them in your Table View.

8. We changed our Model in the connectionDidFinishLoading:
method. We have to let the Table View know that we changed the
data so that it has a chance to reload the new data. We do this by
sending the reloadData message to the tableView.

Note that tableView is a @property inherited by our Table View
Controller from UITableViewController. It is an outlet of our
Table View.

The best place to message the Table View with reloadData is the
setter of the nearbyDeals. If we always instantiate our Model
through the setter, we make sure that the Table View always knows
about this change as soon as possible.

Let's override the nearbyDeals setter with our own implementation
and send the reloadData to the Table View there.

The next screenshot shows you how to do this.

Task 4

Task: Use the SimpleXMLParser class methods to parse the XML
with nearby deals and display them in your Table View.

9. Let's show up the Utilities area.

10. Click on the Prototype Cell in Interface Builder to see its attributes
in Inspector.

11. Change the Prototype Cell's Style to Basic in Attributes Inspector.

Look on the next screenshot for help.

12. Hide back the Utilities area.

Change the Style from here.

Task 4

Task: Use the SimpleXMLParser class methods to parse the XML
with nearby deals and display them in your Table View.

13. Re-implement the tableView:cellForRowAtIndexPath:
method to use the data from the new Model (that we received from
the GeoAds+ server). Each Table View Cell will display information
about a deal. For now, we want to present the deal title and its
thumbnail photo. We extract this information from the
NSDictionary at indexPath.row inside the nearbyDeals
array.

The next slides will guide you through the re-implementation of this
method.

We extract the title and thumbnail
URL as NSString objects

from the deal's NSDictionary.

Set the cell text to be the deal's title.

Send synchronous request to download the thumbnail image.
This request will block this method until the image data is
downloaded from the URL specified by thumbnailUrl.

Because of this, the Table View will load very slow and it may
be unpleasant for the user. It is better to use an asynchronous
request in this case. The asynchronous request will not block

this method (because it will execute on another thread) and the
Table View loading will look really smooth. We are going to
request the thumbnails asynchronously later. For now, we

stick to the synchronous request which is very easy to
implement in one line of code.

Build an UIImage from the
thumbnailData and set it to
the imageView of the Table
View Cell. First we make sure
that our synchronous request
returns something not nil.

Assignment 1
Assignment: Adjust the GeoAds+ URL string that is constructed inside

the requestDealsNearLocation:limit: method in order to
obtain nearby deals only for Restaurants and Bars.

Hint: Look at the request to GeoAds+ API we made from Safari.

Assignment 2
Assignment: Add the deal's subtitle to the Table View Cell.

Hint: You have to change the Prototype Cell Style to Subtitle and set
the cell's detailTextLabel programmatically.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

