

Lab 5:
 Nearby Deals (1 of 6)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Nearby Deals

Description:

We are going to build a new application that will show deals from
nearby restaurants and bars. The application will display the deals in
two modes: a list view (using a UITableViewController) and a
map view (using a MKMapView). We will request the deals from a
server (www.geoadsplus.com to be more precise). We will use XML
to communicate with this server. Note that XML and JSON are
standard ways of communicating with a server.

We have to pass the device location (latitude, longitude) to the server
so that it gives us nearby deals. Thus, we will need to use Location
Services to determine the device location.

We will offer details about our deals. We are going to use a navigation
controller to navigate between the list View and the details View.

The following screenshots are just a mock-up of the application that we
are going to start building today. We will continue this app during the
next 5 labs.

http://www.geoadsplus.com/

Nearby Deals

Task 1

Task: Create a new application in Xcode called “NearbyDeals”.

1. Launch Xcode and select the “Create a new Xcode project” option. If
you don't see the splash window, you should go to “File > New >
New Project...” in Xcode menu.

2. Select the Single View Application template and click Next.

We are actually going to build a Tabbed Application (using a
UITabBarController) as you can see on the previous slide, but
we are going to do it from scratch so that you can learn how to
create complex Storyboards yourself.

3. Type in “NearbyDeals” for the Product Name.

4. Enter “com.FMI.FirstName.LastName” for the Company Identifier.
Notice how Bundle Identifier changes as you type. You should obtain
something like “com.FMI.Radu.Ionescu.Calculator” as your bundle
identifier.

5. Enter “NearbyDeals” as the Class Prefix for the classes this template
is going to generate for us.

Task 1

Task: Create a new application in Xcode called “NearbyDeals”.

6. Select “iPhone” for Device Family.

7. Check “Use Storyboard”. We definitely want to use Storyboards for
this app that will contain more Views. We will segue from one View
to another using Storyboards.

8. Check “Use Automatic Reference Counting”.

9. We won't be creating Unit Tests for this application so we are going
to leave the “Include Unit Tests” option unchecked.

10. Click Next.

11. Navigate to “~/Developer/Apps/” folder inside the home directory. If
you want to keep your project for later use, please save it in a
directory with your name like this: “~/Developer/Apps/<YourName>”.

12. Click Create to create your project directory inside the
“~/Developer/Apps” folder.

Task 2

Task: Start building the app by creating its Storyboard.

1. Open up our MVC's View by clicking on MainStoryboard.storyboard
in Project Navigator.

2. Hide the Document Outline if it's not already hidden.

3. We don’t need the Project Navigator at the far left either, so let’s hide
it by using the “Hide or show the Navigator” button available on the
Toolbar.

4. Bring up the Utilities area by clicking on the “Hide or show the
Utilities” button that is also available on the Toolbar.

5. In Utilities area, click on the Object Library (it might already be
selected). Some objects (those appropriate to dragging into your
View) should appear in the Object Library.

6. Your Xcode project should be set up as in the next screenshot. We
are now ready to create the Storyboard.

Click on this View and drag it to the right side
of the Storyboard. We want to make room for

the next View we are going to add.

Task 2

Task: Start building the app by creating its Storyboard.

7. We are going to add a Table View Controller to our Storyboard that
will contain the list of nearby deals. The current View Controller will
be used to present deal details. We are going to create a segue
from the Table View Controller to this View Controller.

Follow the instructions from the next slides to learn how to do this.

Place it in front of the other View Controller.

Drag a Table View Controller from the Object Library to your Storyboard.

To create a segue, you hold down CTRL
and drag from the prototype cell in Table

View Controller to the other View Controller.

This is a cell prototype. By setting up its attributes
you can change the way cells will look in your
Table View. We are going to leave the default
settings for now, but we are definitely going to

adjust them later.

After you CTRL-drag this pop-up window
will appear to let you choose the segue

type. We want the “Push” type. “Push” is
the kind of segue you use when the two

Controllers are inside a
 UINavigationController.

This segue will be created. You can change
the segue type by clicking on the segue
and looking in the Attributes Inspector.

This is the identifier for this segue. You use it in prepareForSegue:sender:
to figure out which segue is happening. Or you can use it to programmatically

force a segue with performSegueWithIdentifier:sender:.
Type in “ShowDealDetails” for this segue identifier.

You can also change
the segue type from here.

The arrow means that this is where the
application starts. You pick it up and drag it to

whichever View Controller you want.

This switch also controls the
starting point of our app.
Note that this is a View

Controller attribute.

When a View Controller is selected
(notice the blue border around it)

its attributes show up in
Attributes Inspector.

Let's pick up the arrow and put it
in front of the Table View Controller.

Task 2

Task: Start building the app by creating its Storyboard.

8. We have created our first segue but there is a problem here. These
View Controllers are not inside a UINavigationController.
Push will do nothing in this case.

We have to embed our View Controllers inside a Navigation Controller.
Follow the instructions from the next slides to learn how to do this
step.

We have double-clicked on the
background here to make everything smaller.

These buttons also control the zooming.

You can embed a View Controller in a
UINavigationController from

the Editor menu.

Make sure the Table View
Controller is selected.

This is not a segue, it’s the rootViewController
outlet of the UINavigationController.

Notice that application
starting point was preserved.

Task 2

Task: Start building the app by creating its Storyboard.

9. In a similar way, we will embed the Navigation Controller inside a
Tab Bar Controller. Note that this is always the way to go (we never
embed a Tab Bar Controller inside a Navigation Controller).

10. To complete the application Storyboard we will add another View
Controller to the Tab Bar for the map view.

Follow the instructions from the next slides to learn how to do these
steps.

Go to Editor menu and choose
Embed In Tab Bar Controller.

Make sure the Navigation Controller
is selected.

This is not a segue. It just shows that our Navigation Controller is a tab inside
the Tab Bar Controller. The Tab Bar Controller uses an NSArray @property

called viewControllers to keep the View Controllers for each tab.The
order of the view controllers in the array corresponds to the display order in
the tab bar. Thus, the controller at index 0 corresponds to the left-most tab,

the controller at index 1 the next tab to the right, and so on. If there are more
view controllers than can fit in the tab bar, view controllers at the end of
 the array are managed by the More navigation controller, which is itself

not included in this array.

Notice that application
starting point was preserved.

Place it under the Navigation Controller.

Drag a View Controller from the
Object Library to your Storyboard.

To create a relationship, you hold down CTRL
and drag from the Tab Bar Controller to our

new View Controller.

This pop-up window will appear. You want to set
up a relationship (not to create a segue). By

selecting “Relationship” our new View Controller
will be added to the viewControllers array

of the Tab Bar Controller.

This relationship will be created. The Tab Bar
Controller will contain two tabs now: the Navigation

Controller that contains the Table View Controller as its
rootViewController and the new View Controller

that will show nearby deals on a Map.

Task 3

Task: Add tab icons for the two tabs of the application.

1. Open Project Navigator and right-click on the NearbyDeals Project.

2. Select the “Show in Finder” option.

3. In Finder create a new folder and name it “Images”. We are going to
use this folder to put images that we want to add to our Project. It is
a good practice to keep a separate subfolder for this.

4. Copy and paste (using CMD + C and CMD + V, respectively) the
“tab-icon-list.png” and “tab-icon-map.png” files to the “Images”
subfolder. You might want to open another Finder window for this
(use the CMD + N shortcut to do it).

See the next screenshots for extra help.

Right-click here.

Select “Show in Finder”.

Copy and paste the two
PNG images here.

Create the “Images” subfolder.

Task 3

Task: Add tab icons for the two tabs of the application.

5. Close Finder and go back to Xcode. It's time to add the Images
subfolder to our Project.

Right-click on the NearbyDeals Project and select the “Add Files to
NearbyDeals ...” option.

6. Search for the “Images” folder you've just created.

7. Make sure “Create groups for any added folders” is selected.

8. Click “Add” to add the “Images” folder to your project.

9. Make sure the “Images” folder appears in Project Navigator before
you continue.

See the next screenshot for extra help.

An Xcode Project may contain more then one
target application (for example, when build universal
applications for iPhone and iPad). We may choose

to add files only for a specific target from here.

This options will create a group for each folder you add
to your Project. We need this to better organize our
Project files. Note that NearbyDeals, Frameworks,

Products are also groups inside our Project.

Make sure “Images” is selected
and click here.

Task 3

Task: Add tab icons for the two tabs of the application.

10. Hide Project Navigator.

11. Continue with the steps from the following slides to add the tab
icons and complete this task.

We can edit its tab item from here.
Click to see the tab item's properties

in Attributes Inspector.

Scroll inside the Storyboard so that
the Navigation Controller is visible

on your screen.

Zoom in from here.

Select the “tab-icon-list.png” image
here. Note that you get a list with all
the images imported to your project.
This list is automatically generated

and updated by Xcode.

This tab will display the nearby deals
in a list so we are going to name

this tab “List”.

The tab item is updated automatically
as you change its attributes.

 Click to see the tab item's properties
in Attributes Inspector.

Scroll down inside the Storyboard
to the View Controller that is going

to show a map with the nearby deals.

This time select the
“tab-icon-map.png”.

We are going to name
this tab “Map”.

The tab items are also updated
in the Tab Bar Controller.

Task 4

Task: Configure the Table View Controller to show some mock-up data
inside its Table View.

1. Note that there is a Xcode Warning that tells us that we need to set
the reuse identifier of the Prototype Cell.

The reuse identifier is associated with a UITableViewCell object
that the Table View’s delegate creates with the intent to reuse it as
the basis (for performance reasons) for multiple rows of a table view.

It is assigned to the cell object in the initializer method
initWithFrame:reuseIdentifier: and cannot be changed
thereafter. A UITableView object maintains a queue (or list) of the
currently reusable cells, each with its own reuse identifier, and
makes them available to the delegate.

The reuse identifier is just an NSString object that we can set up. It
will be used to identify a type of cell.

Let's set the reuse identifier to “DealCell”. See the next slides for help.

This is the warning.

Scroll inside the Storyboard
to the Table View Controller.

Then click on the Prototype
Cell to change its reuse identifier.

Type in “DealCell” here. This
Identifier will be used to

create UITableViewCells
with the same reuse identifier.

Task 4

Task: Configure the Table View Controller to show some mock-up data
inside its Table View.

2. We should set the Table View Controller title (that appears on the
Navigation Bar). Note that each View Controller (including Table
View Controllers) have a navigationItem that holds properties
related to navigation.

We have to set the navigationItem.title property to “Nearby
Deals”, but we are going to do this in Interface Builder. See the
following slides to understand what needs to be done.

Click on the Navigation Bar
that shows up in the

Table View Controller.

Type in “Nearby Deals” here
and hit Enter to refresh

the title in the Storyboard.

When this bar is highlighted
you see the navigationItem's
properties in Attributes Inspector.

Type in “Nearby Deals” here
and hit Enter to refresh

the title in the Storyboard.

When this bar is highlighted
you see the navigationItem's
properties in Attributes Inspector.

Task 4

Task: Configure the Table View Controller to show some mock-up data
inside its Table View.

3. Let's run the application and see how it looks by now. Notice that it
has two tabs: one that shows an empty list of deals and another one
that shows a white screen.

4. Stop running the application.

5. This all we can do from Interface Builder. Next we are going to have
to write some code to show some mock-up data inside the Table
View Controller. For this we need add a subclass of
UITableViewController to our project and create a relationship
between this subclass and the Table View Controller inside our
Storyboard.

Let's open Project Navigator and continue with the following
screenshots that guide you through adding a subclass of
UITableViewController.

Right-click on the NearbyDeals group and
select the “New File...” option. Note that you

can also do this from the File menu, but in
that case it will not add the new files to the

NearbyDeals group.

Select the Objective-C class template
from the Cocoa Touch category.

Note that you can add other types of
files for iOS applications and also

for Mac OS X applications.

Click Next.

We already have a XIB in our Storyboard
for this Table View Controller so we don't
need another one. Uncheck this option.

Type in “DealsTableViewController” for the class name.
Don't be afraid to use long names for your classes
and objects. It is quite common to name a UI class
using a suffix that suggests its superclass (in this

 case “TableViewController”).

Click Next.

We are going to make a subclass of UITableViewController.
The UITableViewController class creates a controller

object that manages a table view. Note that
UITableViewController is a subclass of UIViewController.

It should also automatically select
the NearbyDeals folder inside our
Project folder. You should make
sure this subfolder is selected.

Xcode knows that we want to add
our new class to the NearbyDeals

group.

Click here to create the new class that
is a subclass of UITableViewController.

It should also automatically select
the NearbyDeals folder inside our
Project folder. You should make
sure this subfolder is selected.

Xcode knows that we want to add
our new class to the NearbyDeals

group.

Click here to create the new class that
is a subclass of UITableViewController.

The interface (.h) and implementation (.m)
files of our new class were added to the
NearbyDeals group. This is nice, but we

still need to make a small adjustment. Drag
these files before the “Supporting Files”

group.

DealsTableViewController implementation
looks like this. We are going to write our own code

here in a moment.

Click on the Storyboard to connect
our Table View Controller to the
DealsTableViewController class.

Click on the Table View Controller to
select it and modify its class type using

the Identity Inspector.

Select the Identity Inspector from here.

Choose DealsTableViewController in
this drop down list. Note that Xcode
automatically detects new classes

added to your project and uses them
when you want to edit class types

using the Identity Inspector.

Task 4

Task: Configure the Table View Controller to show some mock-up data
inside its Table View.

6. Close the Project Navigator and Utilities area to make room for the
Assistant Editor.

7. We are going to modify the DealsTableViewController.m file. Open it
in Assistant Editor. Note that when you select a View Controller in
your Storyboard, Xcode will automatically select its class files in
Assistant Editor.

We will add a very simple model to our Table View Controller that will
hold the mock-up data that we want to present in our table. We are
going to re-implement some of the Table View dataSource
methods to present the data in our Table View.

The next slides will show you how to do this.

Select DealsTableViewController.m and
let's start building the implementation.

Xcode shows up the associated class files
of the selected (Table) View Controller

in Assistant Editor (when it is in Automatic
mode).

We should define a private @property
named nearbyDeals that will be

a pointer to an NSArray object. This
will be our model of the Table View

Controller.

Synthesize this property in the DealsTableViewController
implementation. Also rename its instance variable here.

We keep a strong reference to it.
Because we hold the only reference
to this object it needs to be strong,

otherwise it will be deallocated to
soon.

Let's implement the nearbyDeals getter and
lazily instantiate this @property. You
should add three or four strings to the
NSArray object when you create it.

Also note the #pragma mark annotation.
It helps you organize and separate code

inside your implementation. Here
it separates the methods from the

 UITableViewDataSource protocol.

Next, we are going to implement the
UITableViewDataSource protocol

methods that are required to make things
work properly. After implementing the getter

click here to see a list of the methods.

P means @property.

This heading is created using the
#pragma mark annotation. The text

that goes after #pragma mark
will be displayed here. This is a nice
way to separate and find methods

inside your implementation. It is
especially helpful when you have to

write thousands of lines of code.

This is a list of all the properties and
methods available in your implementation.
This is a quick way to go and see the code

of a certain method. You simply click on
the desired method and the Editor will

scroll to make its code visible on screen.

M means method.

C means class.

Click on the numberOfSectionsInTableView:
method and let's implement it.

The method signature gets highlighted once
you select it. If the method is off-screen the

Editor will automatically scroll to it.

Remove the #warning directive here.
It simply tells the compiler to display a
warning with the text specified after.

Note that you can add your own
 #warnings as reminders if you plan to

modify some code later or you
haven't tested a portion of code.

We will return 1 for the number of sections.
We want our Table View to display the deals
in a single section. More about table sections

later.

Next we are going to implement the
tableView:numberOfRowsInSection:

method. Let's remove this #warning.

Drag this separator line to the left
to make more room for our code.

We are going to need it for the
next two methods.

The tableView:cellForRowAtIndexPath: method
asks the data source (our Table View Controller) for a cell

to insert in a particular location of the table view.
In this method we have to configure the cell for the

location determined by indexPath.

We have only one section that contains all
the nearby deals. Thus, we return the number

of objects inside the nearbyDeals array.
Note that we are using the getter to access

this @property.

The returned UITableViewCell object is frequently
one that the application reuses for performance

reasons. You should fetch a previously created cell
object that is marked for reuse by sending a
dequeueReusableCellWithIdentifier:

message to tableView.

Use @”DealCell” as the CellIdentifier.

Hold down option key and double-click
on the UITableViewCell to open this

class documentation. Note that a
UITableViewCell includes properties
for setting and managing cell content,

specifically text and images.
For each cell we are going to put an NSString
from the nearbyDeals array in its textLabel.
We use the indexPath.row to determine the

row index of the cell we are currently configuring.
Note that indexPath.section returns the

section index of that cell. The row index is
relative to the section index, but we don't have to
worry about this since we only have one section.

When you're done implementing the methods
run the application in iOS Simulator.

Assignment 1
Assignment: Add enough mock-up deals when creating the

nearbyDeals array so that the Table View will have to use scrolling
to display all its cells.

Hint: You should add more than 9 objects to the NSArray that is the
Model of our Table View Controller.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

