

Lab 2:
RPN Calculator App (1 of 3)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Task 1

Task: Create a new application in Xcode called “Calculator”.

1. Launch Xcode and select the “Create a new Xcode project” option. If
you don't see the splash window, you should go to “File > New >
New Project...” in Xcode menu.

2. Select the Single View Application template and click Next.

3. Type in “Calculator” for the Product Name.

4. Enter “com.FMI.FirstName.LastName” for the Company Identifier.
Notice how Bundle Identifier changes as you type. You should obtain
something like “com.FMI.Radu.Ionescu.Calculator” as your bundle
identifier.

5. Enter “Calculator” as the Class Prefix for the classes this template is
going to generate for us.

6. Select “iPhone” for Device Family. We are going to make this
application only for the iPhone (not iPad).

Task 1

Task: Create a new application in Xcode called “Calculator”.

7. Check “Use Storyboard”. Storyboards are a new (iOS 5) way to
organize your MVC's Views that we are going to use.

8. Check “Use Automatic Reference Counting”.

9. We won't be creating Unit Tests for this application so we are going
to leave the “Include Unit Tests” option unchecked.

10. Click Next.

11. Navigate to “~/Developer/Apps/” folder inside the home directory. If
you want to keep your project for later use, please save it in a
directory with your name like this: “~/Developer/Apps/<YourName>”.

12. Click Create to create your project directory inside the
“~/Developer/Apps” folder.

Task 2

Task: Start building our Calculator’s View by adding a text label to be
the Calculator's display.

1. Open up our MVC's View by clicking on MainStoryboard.storyboard
in Project Navigator.

2. Hide the Document Outline if it's not already hidden.

3. Click on the “butler” icon on the Toolbar to show up the Assistant
Editor. This will by default bring up the View’s Controller.

4. We don’t need the Project Navigator at the far left either, so let’s hide
it by using the “Hide or show the Navigator” button available on the
Toolbar.

5. Bring up the Utilities area by clicking on the “Hide or show the
Utilities” button that is also available on the Toolbar.

6. In Utilities area, click on the Object Library (it might already be
selected). Some objects (those appropriate to dragging into your
View) should appear in the Object Library.

Task 2

Task: Start building our Calculator’s View by adding a text label to be
the Calculator's display.

7. Find a UILabel object in Object Library.

8. Drag the UILabel from the Object Library to your View.

9. In Utilities area, click on the Attributes Inspector. You should see
attributes of the Label you just created.

10. Grab the lower right "handle" on the label and resize it to 280 x 36
pixels. Use the dashed blue guidelines to pick a good size. Make
sure you align and resize it as in the preview screenshot from the
next slide.

11. The numbers in a Calculator's display are never (rarely?) left
aligned, so let's change the alignment of the text in our display label
to right by clicking on the appropriate button in the inspector.

Task 2

Task: Start building our Calculator’s View by adding a text label to be
the Calculator's display.

12. Let's also make the font bigger. Increase the font size to 24 point
Helvetica.

13. We don't want our Calculator to appear with "Label" in its display!
So double-click on the label to put it in an editing state then type 0.

14. Hold down CTRL while mousing down and dragging a line from the
text label directly into the code of our Controller.

15. We are going to name this outlet display (since it is the display of
our Calculator). So type "display" for the outlet name.

16. Select the "Weak" storage type and click Connect to create a
property (called display) in our Controller which will point to this
UILabel in our View.

The screenshot from the next slide gives you a hint of how everything
should look like.

Task 3

Task: Add our Calculator’s keypad buttons.

1. Switch Assistant Editor to the Controller's implementation file named
“CalculatorViewController.m”.

2. Delete the code that we don't need which was automatically added
by Xcode. Make sure NOT to remove the @synthesize declaration
and the implementation of the viewDidUnload method.

3. Drag a Round Rect Button from the Object Library to your View.

4. Grab the middle-right "handle" on the button and resize it. A width of
64 points works extremely well, so use that. The screenshot from
the next slide gives you a hint of how everything should look like
after this step.

5. Hold down CTRL while mousing down and dragging a line from the
button directly to the text area where your code is.

Task 3

Task: Add our Calculator’s keypad buttons.

6. Enter “digitPressed” as the name of the action message (which
makes sense since this button is going to be a digit button in our
Calculator’s keypad).

7. You can leave the rest of the fields alone (the defaults are fine for
this button). Then press Connect.

8. Similar to an outlet, you can mouse over the little icon on the left of
the method implementation and see which object(s) in your View
send(s) this message. Notice how the button highlights.

Check out the screenshot from the next slide for a hint of how
everything should look like.

Task 3

Task: Add our Calculator’s keypad buttons.

9. The type id is a very special type. There are some times when we
want to use it because either we allow any class of object to be
passed into a method (uncommon) or because the class of the
object is opaque (it's like a cookie).

But neither of those cases applies here. In this case, we know that the
sender to digitPressed: is going to be a UIButton. Therefore
we are going to change this type to be “pointer to a UIButton”
instead of “pointer to an object of any class”.

Select the type of the sender argument to this method and replace it
with the type “UIButton *".

Check out the screenshot from the next slide.

Using UIButton * rather than id is called "static typing". Static typing is
purely a compiler thing. It has no effect on what happens at run time.

The compiler will just generate better warnings if you try to write code
that sends a message to sender which a UIButton does not recognize.
If you send a message to sender that it does not recognize, your program

will crash, regardless of whether you statically typed sender.

Task 3

Task: Add our Calculator’s keypad buttons.

10. Copy and paste our first button to make another button. The copied
button will send the same action (digitPressed:) as the original.

11. Move the copied button to line up horizontally with the original (the
dashed blue lines are awesome here).

12. Copy and paste again to obtain 3 buttons horizontally aligned.

13. Now copy and paste 3 buttons at a time.

14. Using copy and paste and the grid lines, create the entire keypad
for the Calculator. It should look like in the screenshot from the next
slide.

Task 3

Task: Add our Calculator’s keypad buttons.

15. Double-click on a button to make its text editable. Then type the
number that goes in the appropriate spot.

16. Do this for all the buttons. Your keypad should now look like the
one in the screenshot from the following slide.

17. Right-click on the nine button.

18. Mouse over the "Touch Up Inside" connection and you will see that
the whole View will highlight (that's its way of showing you that this
button sends its message to the Controller).

19. Right-click on the icon that represents the Controller (it's under the
View).

20. Then mouse over this "Button - 4" entry. Notice how the button
highlights.

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

1. We won't need the Utilities area for a while, so close it from the “Hide
or show the Utilities” button from the Toolbar.

2. Start by declaring a local variable called digit inside the
digitPressed: method implementation. This local variable will be
of type "pointer to an NSString object".

3. Since all the buttons send the same action message to our
Controller, we have to look at the action message’s argument
(sender) to find out which one was touched.

UIButton objects respond to the message currentTitle which
returns an NSString containing the title of the button. We'll use that
to figure out which button was touched.

Make sure your code looks like in the next screenshot.

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

4. Add an NSLog() to print the digit chosen by the user to the console.
Your code should be something like the code in the next screenshot.

5. Run the application with this NSLog() in place.

6. Touch a few keys and check out the console for the messages
printed by NSLog().

7. Stop the simulator and delete the line of code with NSLog().

8. Now that we have the digit from the button, we need to update our
display by appending the digit onto the end of it. This actually
only takes one line of code, but we’ll break it down into steps.

Let's make another local variable called myDisplay (of type "pointer
to a UILabel") into which we'll just put the value of our display
outlet. Make sure you express calling the getter of our display
@property using dot notation.

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

9. Now that we have a pointer to our display, let's send it a message to
find out what text is currently in it. The message to send is called
(appropriately) text.

Add a line of code to get the text out of our display UILabel and
store it in a local variable (a pointer to an NSString object) called
currentDisplayText. Note that text is a property of UILabel
and you can use dot notation to access it.

Look at the screenshot from the next slide to see how your code should
look at this moment.

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

10. There's really no need for the local variable myDisplay. So let's
select and copy its value (self.display) and paste it where we use it.

11. Now you can delete the line of code that declares the local
myDisplay variable.

12. Next we need to append the digit that the user just touched onto
the end of what is currently in the display. Create a local variable
called newDisplayText and assign it with the value returned by
messaging the currentDisplayText local variable with
stringByAppendingString: with the argument digit.

Look at the screenshot from the next slide to see how your code should
look at this moment.

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

13. We need to set our display UILabel's text to the new string with
the digit appended to the end.You can use dot notation to set the
self.display.text property to be the newDisplayText.

Note that dot notation for setters is exactly the same as dot notation for
getters, it’s just that they appear on the left-hand side of equals
signs rather than the right-hand side.

14. We don't need the newDisplay local variable really, so let's copy
its value (the stringByAppendingString: message-sending
construct) and paste it where it is used.

15. Then we can delete the previous line (that declares the
newDisplayText variable).

Look at the screenshot from the next slide to see how your code should
look at this moment.

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

16. The same thing happens for the currentDisplayText local
variable. It is not really needed. Copy the value of
currentDisplayText and paste it where it is used.

17. Okay, let’s Run and see if this works!

18. Touch a few keypads. Notice the leading zero that doesn't look right
on the display. We should try to fix the problem with the leading
zero.

The problem with the leading zero is that we are appending new digits
even if the user is not currently in the middle of entering a number.
The display should get cleared when the user starts typing a new
number instead of appending to whatever happens to be there (like
the 0 at the beginning or some operation’s result later on).

Look at the screenshot from the next slide to see how things should
look by now.

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

19. To fix this, we are going to need a @property to keep track of
whether the user is in the middle of entering a number. But we don't
want to add the @property to our header file because those
properties are public.

So where do we add private properties? We need to add a private
@interface to our implementation file. This is called a Class
Extension.

The concept of “public versus private” in Objective-C is done via
"header file versus implementation file". You declare public stuff in
your header file’s @interface-@end block. You declare private
stuff in your implementation file’s @interface-@end block.

20. Add a private boolean property to track whether the user is in the
middle of entering a number. Check out the screenshot in the
following slide to understand how to do this.

There’s no strong or weak here
because a BOOL is not a pointer.

This is called a Class Extension.
Notice the () at the end.

BOOL is the typedef used for
boolean values in Objective-C.

Its value is either YES or NO.
NO is zero, YES is non-zero.

nonatomic means that the setter and
getter for this property will not be thread-safe.
You will always use this keyword unless you

really know what you are doing. It’s not really a
problem because even though we will do lots

of multi-threaded programming in iOS, virtually
all methods in UIKit must be performed on the

main thread of execution in your application (it is
non-UI activity that we will put in other threads).

You might think userIsInTheMiddleOfEnteringANumber
is sort of a silly name for a variable. But long variable
names are encouraged in iOS development because

Xcode completes them for you after only a few characters
and self-documentation is very important to good coding style.

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

21. There are two warnings for the private @property declaration. The
problem is that we declared the @property, but we have not
implemented the getter (first warning) or the setter (second
warning).

Let's use @synthesize (again) to implement both the getter and the
setter for us! Note that @synthesize doesn't care whether your
@property is public (declared in the header) or private (declared in
the implementation file).

Task 4

Task: Write the code inside digitPressed: that will get executed
whenever any of the keypad buttons gets touched.

22. Now we just need to only do the appending if the user is in the
middle of entering a number.

But what value does userIsInTheMiddleOfEnteringANumber
start out with? All properties start out with a value of zero. For a
pointer to an object (like display) zero is called nil. Your program
will not crash if you send a message to nil. It just does nothing in
that case (any value the method returns will be zero).

If the user is not in the middle of typing, just start off a new number with
the digit that was touched. In this case we must set
userIsInTheMiddleOfEnteringANumber to YES because we
are now in the middle of entering a number.

Check out the screenshot from the next slide to see the final
implementation of digitPressed:.

23. That should do it. Let's run again.

Task 5

Task: Add some more buttons (for operations *, /, +, - and Enter).

1. Bring back the Utilities area.

2. Drag a Round Rect Button from the Object Library to your View. Do
NOT copy and paste a digit button to make this first operation
button. Copying and pasting buttons brings the button's action
message along with it and we want operation buttons to send a
different message than digit buttons!

3. Resize the button to 64 x 37 pixels.

4. CTRL-drag to create this button's action.

5. Name the action operationPressed: then click Connect.

6. You should statically type the sender to UIButton *.

Check out the screenshot from the next slide to see how the button and
the action should look like.

Task 5

Task: Add some more buttons (for operations *, /, +, - and Enter).

7. Now use copy and paste to create 4 operation buttons. Again, do not
copy and paste a digit button to make an operation button!

8. Set the title of each to these four operations to *, /, + and -,
respectively. Check out the screenshot from the next slide to see
how your view should look like by now.

9. We need an Enter button because an RPN calculator puts all of its
operands on a stack and then operates on them. Enter is used to
push a number onto the operand stack (e.g. 6 Enter 5 Enter +
results in 11).

Drag a Round Rect Button from the Object Library to the View and
place it between 0 and - buttons. Do NOT copy and paste either a
digit button or an operation button to make an Enter button. The
Enter button will have a different action than either digit buttons or
operation buttons.

Task 5

Task: Add some more buttons (for operations *, /, +, - and Enter).

10. Resize it to 64 x 37 pixels and set its title to Enter.

11. CTRL-drag to create this button's action. Put this action before
operationPressed: in the file. We are going to call the Enter action
from operationPressed:, so it needs to be declared earlier in the
file. This is not a compiler restriction, but only a good coding
practice.

12. Name this action enterPressed.

13. There's something a little different about this action method. We
don't need the sender argument because there's only one Enter
key. Note that we can control whether an action message includes
the sender as an argument.

Change the Arguments to None and click Connect.

Everything should look like in the following screenshot.

Notice the enterPressed
action has no arguments.

Task 6

Task: Create the Model of our MVC for the calculator brain.

1. We cannot proceed any further with our implementation without the
Model of our MVC. So we’re going to take a time-out from
implementing our MVC’s Controller to go implement our MVC’s
Model. Hide the Utilities area again.

2. Before we switch to our writing our Model, it would be nice to capture
the setup on the screen (i.e.View and Controller) so that we can
easily return to it later. We can do that using Tabs in Xcode (just like
Tabs in a Browser).

In Xcode menu go to “File > New > New Tab” (or use the CMD + T
shortcut) to open a new tab.

Notice the new tab starts out as a snapshot of the old tab. Once we
start changing it, we can get back to the old arrangement by clicking
the other tab.

Task 6

Task: Create the Model of our MVC for the calculator brain.

3. Time to create our Model. Do this by selecting “New File” from the
File menu.

The File menu's “New File…” item is the gateway to creating a wide
variety of things in an application. Including not only new classes (as
in this case), but also user-interface elements, database schema,
and more.

4. Select the “Objective-C class” option and click Next.

5. We are going to call our Model's class “CalculatorBrain”, so type that
in the Class field. Check out the following screenshot.

Our Model is going to be a direct subclass of NSObject, so this is
correctly selected. NSObject is the root superclass of all objects in
iOS. Classes inherit some nice generic functionality from NSObject
including the method called description which returns an
NSString representation of the object which is useful for
debugging with NSLog().

Also notice the new tab.

Task 6

Task: Create the Model of our MVC for the calculator brain.

6. Then click Next to choose where to put your Model’s .m and .h files.

7. Make sure you put your Model’s .m and .h files in the same place as
all of your other .m and .h files, that is in the "Calculator" subfolder.

8. Don’t put your Model’s .m and .h files in the top-level group in the
Navigator either. Put them in this group one level down.

Check out the screenshot from the following slide to understand how to
set things up.

9. Click Create. Notice the Navigator shows up after you create your
Model. Also notice that Xcode has created stubs for both the header
and implementation of our MVC’s Model and it has automatically
renamed the current tab. You can name it yourself by double-clicking
on it if you wish.

10. Close the Navigator to make space.

This chooser defines where your Model’s
.m and .h files will appear in the file system.

Other .m and .h files in your project.

This pop-up defines where your Model's
files will appear in the Navigator. (the

area on the left that we hid at the start).

Task 6

Task: Create the Model of our MVC for the calculator brain.

11. We’re going to start by defining the public API of our Model. All of
our public API lives in the header file (that’s what makes it public).
Public API are method and properties other objects (besides our
Model itself) are allowed to invoke.

First add the pushOperand: which will provide a way to push
operands onto our Calculator's stack of operands. This method must
return nothing (void). The argument must be a double-precision
floating point number called operand.

Notice the warning that was introduced by declaring this method. It
says "Incomplete implementation". This makes sense because we
have not yet implemented pushOperand:.

The following screenshot will show you how to declare this method.

The - means this is an instance method
(i.e. instances of this class respond to it).

There is also such a thing as a class method
(i.e. the class itself responds to it) which

must be declared with a + at the beginning.

Task 6

Task: Create the Model of our MVC for the calculator brain.

12. Now add the performOperation: method that performs a given
operation using the operands on the stack. We are going to use a
string to describe the operation (the same string that is on the
operation buttons in our UI). This is pretty bad design to have strings
in the UI also have meaning in your Model, but it’s simple and so
we’ll go with it for this demo.

This method returns a double (the result of performing the operation).
The argument to this method is a pointer to an NSString object
called operation.

13. Let’s stub out both of our methods in our implementation.

14. Let's have the performOperation: method return a default
value of zero for now.

The .m and .h files of our model should like in the next screenshot.

Task 6

Task: Create the Model of our MVC for the calculator brain.

15. How are we going to store our stack of operands? We are going to
use an array. “Pushing” onto our stack will just add an item to the
end of the array. “Popping” will grab the last item in the array, then
remove that item from the array.

Add a private @interface so that we can declare the array we need
to store the operand stack.

16. Add a nonatomic and strong @property called
operandStack of type “pointer to NSMutableArray object”.

We will cover much more later about arrays, strings, etc., but notice
that this array’s class name is NSMutableArray. The base array
class (NSArray) is not modifiable. Clearly that wouldn’t work for this
class’s implementation.

Check out the next screenshot.

strong means keep this object (the array) around until I’m
done using it. Most non-outlet @propertys are strong.

As we saw earlier, the alternative to strong is weak.
weak means “if no one else is interested in this object,

then neither am I, so set this @property to nil (zero) if
that becomes the case”. This time, our Model’s

implementation is the only one interested in
operandStack, so we must make it strong.

Task 6

Task: Create the Model of our MVC for the calculator brain.

17. Check the warnings for the previously declared property.

As we saw last time we added a @property, the compiler warns us
that we need to create its getter (operandStack) and setter
(setOperandStack:). It’s even suggesting that we use
@synthesize to generate the getter and the setter.

Add an @synthesize for the operandStack in the implementation.

18. And then, as an exercise, let's type in exactly what @synthesize
would generate. Check out the next screenshot to make sure you
did this right.

Task 6

Task: Create the Model of our MVC for the calculator brain.

19. Now that we have a stack, let’s try to push an operand onto it. Note
that NSMutableArray is an array of objects and a double is a
primitive type, not an object. But there is a class called NSNumber
which can be used to wrap primitive types into an object.

Wrap the operand with an NSNumber by using the NSNumber's class
method numberWithDouble: and store it into a “pointer to
NSNumber” object called operandObject.

20. Then, add the operandObject to the stack with the addObject:
method. Again, check out the next screenshot to make sure you did
this right.

Recall that all @propertys start out nil (zero).
And recall that sending a message to nil does nothing.

So this line of code will be doing nothing. Somewhere
we need to initialize the operandStack @property.

Task 6

Task: Create the Model of our MVC for the calculator brain.

21. There is a perfect place to initialize operandStack. Its getter!

If someone tries to get operandStack and it is not initialized, initialize
it before returning it. This sort of initialization is called “lazy
instantiation” and is a common paradigm in iOS.

To create a mutable array (or any object in general) you should use the
[[NSMutableArray alloc] init] construct. But first you must
test if the operand stack is nil. Notice the implicit testing of a
pointer (to see if it is nil) is if (operandStack == nil). You
could also say if (!operandStack).

Check out the next screenshot to make sure you did everything right.

Task 6

Task: Create the Model of our MVC for the calculator brain.

22. Recall the fact that @synthesize creates an instance variable with
the same name as the property is dangerous. We can avoid this
potential accident by having @synthesize use a different name for
its instance variable than the name of the property.

Prefix the instance variable with an underscore (_operandStack).

23. Only setters and getters should access the instance variable
directly. Fix the setter and getter to access the instance variable by
its new name, _operandStack.

24. We are not going to do anything with the setter, so you can delete
it. Remember that @synthesize will always create whichever
setter and/or getter that you do not.

Check out the next screenshot to make sure you did everything right.

Task 6

Task: Create the Model of our MVC for the calculator brain.

25. It is time to implement the performOperation: method. Let's
start by implementing the + operation.

First, we should verify that the operation is @”+” with the
isEqualToString: method. Then we must pop two operands and
add them into the result. Let's write this.

Check out the next screenshot to make sure you did everything right.

Task 6

Task: Create the Model of our MVC for the calculator brain.

26. Notice the error that tell us that popOperand is not implemented.

Implement popOperand method by getting the lastObject in our
operandStack array, then returning that last object’s
doubleValue.

Note that lastObject is a method that NSMutableArray inherits
from NSArray which returns the last object in the array. All the
objects in our operandStack array are NSNumbers and NSNumber
responds to the method doubleValue (which returns a double).

27. We got the value off the end of the array, but we also need to “pop”
it off by removing it. We have to send the removeLastObject
message to the operandStack, but not before testing if the
lastObject is not nil.

The next slide shows you a screenshot with the popOperand method
implementation.

Unlike lastObject, sending removeLastObject to an
array that is empty will raise an exception (index out of

bounds) and crash your program! That is why we check to
see if we actually got a non-nil operandObject from the

array before trying to call removeLastObject.

Sending lastObject to an array that is empty just
returns nil (it does not raise an exception or do anything

bad). And sending any message to nil returns nil.

Task 6

Task: Create the Model of our MVC for the calculator brain.

28. Implement the *, -, and / operantions. Make sure to get the order of
operands correct for the - and / operations! For example, the input “6
Enter 2 -” should be 4, not -4.

29. Finally, we must be sure to push the result back onto the stack
so that the next operation we are asked to do will use it.

The screenshot from the next slide shows the final implementation of
our CalculatorBrain Model.

We return zero on divide by zero instead of “not a number”.
We are sort of a “return zero on failure” calculator!

Notice that this time we send the isEqualToString:
to the constant NSString the compiler creates for us
when we use the @"*" notation. That NSString is
every bit as much an NSString as operation is.

Task 7

Task: Finish the Controller implementation by connecting it to the
Model.

1. Switch back to our Controller to finish it off. Click on the name of the
file in the top bar and use it to navigate to your Controller’s
implementation (CalculatorViewController.m).

2. Your Controller’s implementation (.m) file should appear on the left.
Note that the Automatic Assistant switched the right-hand side to our
Controller’s header file (instead of our Model’s). But actually, we
want our Model’s header file on the right because we are going to
use it in our Controller. But to have our Model’s header file on the
right-side in Automatic mode, we need to create the relationship
between our Controller and the Model in our code. We do that by
#importing our Model into our Controller’s implementation.

#import the Model’s header file into our Controller’s implementation.
Make sure you save the implementation at this moment.

The screenshot from the next slide shows the project configuration at
this moment.

This is where you switch from the Model's implementation to
the Controller's implementation (CalculatorViewController.m).

Task 7

Task: Finish the Controller implementation by connecting it to the
Model.

3. Put the CalculatorBrain header file on the right in Assistant Editor.
Check the next slide to understand how to do this.

Your Model’s header file should appear on the right. It is common to put
the header file (public API) of a class on the right-hand side of the
screen as you are working in your implementation on the left.

4. All we need to do next is to add a private @property in our
Controller that points to our Model. And then use an instance of our
Model to implement operationPressed: and enterPressed.

Add a @property (called brain) to hold a pointer from our Controller
to our Model.

Click here and navigate through “Includes” to get
CalculatorBrain.h to show up on the right.

If you have not #imported CalculatorBrain.h into
your CalculatorViewController.m or haven’t

saved it, CalculatorBrain.h may not appear here.

Task 7

Task: Finish the Controller implementation by connecting it to the
Model.

5. Add a @synthesize to create the brain setter & getter. Again, we
will use the most common naming convention for the corresponding
instance variable (underscore plus property name).

6. We need to implement the getter of the brain @property in order
to lazily instantiate the brain (in its getter method).

See how to set things up in the next screenshot.

Task 7

Task: Finish the Controller implementation by connecting it to the
Model.

7. Next let's handle the Enter button being touched. All we need to do is
push the double value of the display into our Model
(self.brain).

Note that NSString responds to doubleValue as well. It tries to
parse a double out of whatever is in the string. Luckily, there is no
way to put anything but a number into our Calculator’s display.

8. Of course, touching Enter means we are no longer in the middle of
typing a number.

We need to set userIsInTheMiddleOfEnteringANumber to NO.

See how to set things up in the next screenshot.

Task 7

Task: Finish the Controller implementation by connecting it to the
Model.

9. To implement operationPressed: we have to look at the button
that sent us the action to determine which operation to perform. As
for digits, we look at the sender's currentTitle.

10 .Then we just perform the operation using our Model and store the
result in local variable of double type.

11. We also need to update the display with the result of the
operation. We can use the NSString's stringWithFormat:
class method to convert the double result into a string object.

See how to implement the operationPressed: method on the next
slide.

Task 7

Task: Finish the Controller implementation by connecting it to the
Model.

12. By the way, when an operation is pressed and the user is in the
middle of typing a number, let’s do an implicit Enter. For example, 6
Enter 4 - would be the same as 6 Enter 4 Enter -.

The screenshot from the next slide shows the final implementation of
the operationPressed: method.

13. All done! Hit Run again. Touch 360 Enter 9 /. The result should be
40.

14. Then touch 77 +. The result should be 360 / 9 + 77 = 117.

Assignment 1
Assignment: Your calculator already works with floating point numbers

(e.g. if you touch the buttons 3 Enter 4 / it will properly show the
resulting value of 0.75), however, there is no way for the user to
enter a floating point number. Remedy this. Allow only legal floating
point numbers to be entered (e.g. “192.168.0.1” is not a legal
floating point number).

Hint: Add another button for “.” and the action pointPressed. There’s
an NSString method which you might find quite useful. It’s called
rangeOfString:. Check it out in the documentation. It returns an
NSRange which is just a normal C struct which you can access
using normal C dot notation. For example, consider the following
code:

NSString *greeting = @"Hello There Joe, how are ya?";

NSRange range = [greeting rangeOfString:@"Bob"];

if (range.location == NSNotFound) { ... /* no Bob */ }

Be careful of the case where the user starts off entering a new number
by pressing the decimal point, e.g., they want to enter the number
“.5” into their calculator. Handle this case properly.

Assignment 2

Assignment: Add a “C” button that clears everything (for example, the
display in your View, the operand stack in your Model, any state you
maintain in your Controller, etc.). Make sure 3 7 C 5 results in 5
showing in the display.

Hint: Add another button for “C” and the action clearPressed. You
will have to add API to your Model to support this feature. To be
more precise you will have to declare and implement another
method in CalculatorBrain to emptyOperandStack. Note that you
can remove all objects from an NSMutableArray by calling a
single method. Look into the NSMutableArray documentation for
this.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

