

Lab 10:
 Nearby Deals (6 of 6)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Task 1

Task: Save the favorite deals on the device. Add local storage for this
using Core Data.

1. Launch Xcode and go to “File > Open” and select the Xcode project
(.xcodeproj) inside the “NearbyDeals(5of6)” folder.

2. Run the application in iOS Simulator and take a look over the
application to remember what was done last time.

3. Stop running the application.

4. We want to save the “favorite” deals of the user locally on the device.
If the user taps on a deal to view details about it, we add it to the list
of favorite deals. This list will be presented in another View
Controller that can be accessed from the Tab Bar.

The list of favorite deals is going to be editable (the user can delete
deals from this list).

Look over the next slide to see a mock-up of this View Controller.

Favorite Deals

Task 1

Task: Save the favorite deals on the device. Add local storage for this
using Core Data.

5. The first thing to do is to add the Core Data framework to our project.

Open Project Navigator and click on the Project itself.

6. Select NearbyDeals under Targets, then go on the “Build Phases”
tab.

7. Expand “Link Binary with Libraries” and click on the “+” button to add
a new framework.

8. Select the CoreData.framework from the pop-up window and click
Add to add it to your Project.

9. Drag the CoreData.framework in Project Navigator and drop it under
the Frameworks group.

See the next slides for hints.

Add the Core Data
library to your Project.

Drag and drop it in the
Frameworks group.

Task 1

Task: Save the favorite deals on the device. Add local storage for this
using Core Data.

10. We are going to store the favorite deals using Core Data. Thus we
add a Core Data Model to our Project and add the Deal Entity with
the following Attributes: title (String), subtitle (String), latitude (Float),
longitude (Float), thumbnail (Binary Data), url (String).

11. We will also automatically generate a class for this Entity.

The next screenshots will help you in completing this task.

Let's add a new file to
the NearbyDeals group.

Then click Next.

To create a visual map of the local
 database objects select Data

Model under Core Data section.

And click Create to
add it to the Project.

Type in “FavoritesModel” for the name of the
Data Model since it stores only favorite deals.

Drag and drop the Data Model file
right here (under Nearby Deals).

Click here to add an Entity.

An Entity will appear in our code as an
(or a subclass of an) NSManagedObject.

Type in “Deal” for this Entity name.

Then edit the name
of the Attribute here.

Now add the Attributes mentioned
earlier. We will start with title.
Click here to add an Attribute.

Notice that we have an error. That’s
because our Attribute needs a type.

Set the type of the title Attribute to String.
Note that all Attributes are objects.

Here are all the Attributes
of a deal. Make sure you

set the types properly.

Note that we are going to
store the thumbnail

image as NSData.

Select the Deal Entity. We are
going to have Xcode generate

a NSManagedObject subclass
 for it.

Go to Editor Menu and ask Xcode
to generate a NSManagedObject

subclass for our Deal Entity.

Pick where you want your
new classes to be stored

(default is often one directory
level higher, so watch out).

This option will make your @propertys be
scalars (e.g. float instead of NSNumber *)

where possible. Let's check it to have
floats for latitude and longitude.

Then click Create.

Here is the class that was
generated: Deal.h/Deal.m.

We have @propertys for all of
Deal’s Attributes. That's great!

Note that @dynamic means that Deal does not implement
the setter or getter for these properties, but it “responds” to the

messages by calling the valueForKey: or setValueForKey:
methods of the NSKeyValueObserving protocol.

Task 2

Task: Add API to the DealsModel class to make it easy to add, query
and remove favorite deals.

1. Switch to the DealsModel.m tab in Xcode.

2. We use classes from the Core Data framework for this task. Let's
#import the framework in our DealsModel.h file.

3. We need a UIManagedDocument to hold our Favorite Deals Model.
It will be a strong @property of the DealsModel.

Add this property to the header file and name it favoritesDocument.

4. Use @synthesize to generate the accessor methods. Rename the
instance variable by prefixing it with underscore as usual.

Look over the next screenshot for help.

Core Data is #imported here.

Task 2

Task: Add API to the DealsModel class to make it easy to add, query
and remove favorite deals.

5. As soon as the sharedModel is initialized we should load the Core
Data Model from the File System.

Note that the FavoritesModel.xcdatamodeld file (that contains the Core
Data model) is copied in the Bundle directory when the application is
installed on a device. To make it writable (i.e. add or remove deals
from it) we must copy it to the Documents directory when the
application starts for the first time.

We store the favorite deals in that copy of the Core Data Model file.

Also note that Xcode compiles the model file to remove the extraneous
information and make runtime loading of the resource as efficient as
possible. An xcdatamodeld “source” directory is compiled into a
momd deployment directory.

Thus we have to load FavoritesModel.momd from the File System in
the UIManagedDocument. Follow the steps from the next slides.

Switch to standard Editor to have more
room for our implementation code.

We search for the Core Data Model
file path in the Bundle's directory.
Then build a NSURL for that path.

Create an NSURL for the Core Data Model
file in the Documents directory. Note that

we have to create this file if it doesn't exist
(e.g. if the application starts for the first

time on a device).

But if the Model file already exists
 in the Documents directory, we

just open it from there.

We initialize the UIManagedDocument
using the URL of the Core Data Model file.

This is just a block of code to execute when the open completes.
We are going to add a flag @property to the DealsModel to and

set it here to YES so that we know when our Model is ready for use.

Open Assistant Editor to declare
the @property in the header file.

Declare the @property like this.

And @synthesize it here.

Then set it to YES if the
document opens with success.

Switch back to
standard Editor.

If the Model doesn't exist in
the Documents directory, we

load the Core Data Model
file from our Bundle.

Then we copy the sourceDocument to the
Documents directory to make it writable.

If the document was successfully copied,
we can open it from its new location.Set isDocumentReadyForUse to YES

if the document opens with success.

Task 2

Task: Add API to the DealsModel class to make it easy to add, query
and remove favorite deals.

6. Open Assistant Editor to edit the DealsModel.h header file.

7. It's time to declare all the @propertys and methods of the API that
manipulates the Core Data Model.

We are definitely going to use the Deal class (that is a subclass of
NSManagedObject) here, so let's #import it in our header.

8. Add a new readonly @property that will fetch and return the
favoriteDeals from the Core Data database.

9. Declare an instance method that will receive an index argument
and will add the corresponding nearby deal to the FavoritesModel.

10. Declare another instance method to remove a favorite Deal from
the Core Data Model.

Look over the next screenshot for help.

Note that we don't #synthesize favoriteDeals
here. That's because we are going to implement the

getter ourselves.

Task 2

Task: Add API to the DealsModel class to make it easy to add, query
and remove favorite deals.

11. Let's implement the favoriteDeals getter in a section of code
delimited by the #pragma mark directive. We are going to add all
the API for the Core Data Model manipulation in this section of code.

Create an NSFetchRequest object and set its sortDescriptors so
that it sorts by “title” ascending. To create an NSSortDescriptor
use sortDescriptorWithKey:ascending: and put it in an
NSArray with a single object.

Get the UIManagedDocument's managedObjectContext and
send it the executeFetchRequest:error: message to fetch the
favorite deals from the Core Data Model. It will return an NSArray
of Deals.

We want the returned array to be editable, so let's return a
mutableCopy of it.

Look over the next screenshot for hints.

 Note that we don't set the predicate of this request anywhere. It will return all
the deals in this case. It's similar to an SQL statement without the WHERE clause.

Before fetching the results, we have to check
that the document was previously opened with

success and its documentState is
UIDocumentStateNormal.

Task 2

Task: Add API to the DealsModel class to make it easy to add, query
and remove favorite deals.

12. Now let's continue with the addToFavoritesDealAtIndex:
implementation.

The first thing to do is to test if the document is in a state that would let
us insert a new deal. Then we verify if the deal we are about to add
is not already in the database (and we don't need to add it
anymore).

If the deal is not there, we create a new Deal object using the
insertNewObjectForEntityForName:inManagedObjectContext:
method of NSEntityDescription and we set its Attributes from
the deal's NSDictionary.

The last thing to do is to make sure that our change is replicated on the
File System by saving the favoritesDocument in the Documents
directory.

Look over the next slides for help.

Get the corresponding deal's NSDictionary
from the nearbyDeals array.

We need to insert the deal in managedObjectContext,
so let's hold it in local variable like this.

Let's see if the deal is already in the Core Data
Model. We'll try to fetch it by its URL (we consider

deals to be unique by URL).

The fetch returns an NSArray of deals,
but we know it can be only one.

Let's get it from the lastObject.

Let's insert the deal
if it's not in database.

We create it using this class method of
 NSEntityDescription. Notice that we have
to specify the Entity name that we want to create.

We set the deal's Attributes using @propertys.
This is very elegant coding. It's type safe too.

The thumbnail may not be downloaded by the
time we want to add this deal to the FavoritesModel.

We have to synchronously download it from the
server before saving it in the Core Data Model.

If the thumbnail image is in images dictionary,
just set the corresponding NSData @property.

Finally, we save to favoritesDocument in the Documents
directory. Note that it contains its own URL in this @property.

The Core Data Model should already be in the Documents directory.
Thus the operation is UIDocumentSaveForOverwriting.

Task 2

Task: Add API to the DealsModel class to make it easy to add, query
and remove favorite deals.

13. We will implement the removeFavoriteDeal: method to
complete our API. It will simply remove the deal received as a
parameter.

Again, the first thing to do is to test if the document is in a state that
would let us delete a deal. To remove the deal we send the
deleteObject: message to the managedObjectContext.

Make sure our change is replicated on the File System by saving the
favoritesDocument in the Documents directory.

Look over the next slide for help.

Assignment 1
Assignment: Save the nearby deals “viewed” by the user in the Core

Data Model.

Note that deals are “viewed” when they appear in the Deal Details View
Controller. Remember that deals can be “viewed” from the list or
from the map.

Hint: First, you should addToFavoritesDealAtIndex: when the
Table View Controller prepares the @"ShowDealDetails" segue.

The AtIndex: argument corresponds to the UITableViewCell's
indexPath.

The same thing to do in the Map View Controller. Note that the
AtIndex: parameter correspond this time to the pinView's tag.

Assignment 2*
Assignment: Add another View Controller to present favorite deals.

Hints: You must create a new subclass of UITableViewController
and add it to your Project. Name this class something like
FavoritesTableViewController.

On the MainStoryboard.storyboard file you would have to add a Table
View Controller from Object Library.

Configure it to be similar to the DealsTableViewController. Set the Row
Height to 70 pixels and make sure that the Prototype Cell is of the
same height. Set the Prototype Cell's style to Subtitle and assign it a
reuse identifier.

Make sure this Table View Controller's (added from Object Library)
class type is FavoritesTableViewController.

CTRL-drag from the Tab Bar Controller to the Favorites Table View
Controller to create a new tab. Set the Tab Bar Item identifier to
Favorites (it will also have an icon).

Assignment 2*
Hints: Add implementation to the FavoritesTableViewController.m file. It

should have an NSMutableArray @property that will hold the
favoriteDeals. This property can be private.

Fetch the favoriteDeals when viewWillAppear: and reloadData.
You would have to #import the DealsModel header file for this.

Implement the Table View data source methods: return 1 for the
number of sections and favoriteDeals.count for the number of
rows.

Make sure you initWithStyle:reuseIdentifier: a cell if there
isn't one to dequeue in tableView:cellForRowAtIndexPath:.
Note that you have to create a UIImage from the deal's
thumbnail using imageWithData: before returning the cell.

To support standard deletion of UITableViewCells you must
implement tableView:commitEditingStyle:forRowAtIndexPath:
method. Uncomment the code that was generated by Xcode. Send
the removeFavoriteDeal: message to the sharedModel to
remove a deal from the Core Data Model. Also remove it from the
favoriteDeals (this is why favoriteDeals is mutable).

Assignment 3
Assignment: Run the application in iOS Simulator and test the new

features. Try to see if the Favorite Deals live after the application is
terminated.

Hint: To terminate an application tap twice on the Home button of the
device. Look for the NearbyDeals application in the pop-up menu
that appears on screen (right above the Home button). Hold your
finger on the application's icon until it starts shaking. Then tap on the
little minus badge on the upper left corner of the icon.

Start the application again by tapping on its icon on the Home screen.
The previously saved favorite deals should appear right from the
start.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

