

Lab 1:
HelloWorld App

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Task 1

Task: Create a new application in Xcode called “HelloWorld”.

1. Launch Xcode and take a look at the splash window. On the left side
you will find a few options: Create a new Xcode project, Connect to
a repository, etc. Recent projects show up on the right side of this
window.

The Create New
Project option.

As you create projects,
they will appear in the

Recents Projects
section (right here).

Here is the Xcode menu. Like every Mac OSX application,
Xcode displays it's menu on the upper side of the screen.

Task 1

Task: Create a new application in Xcode called “HelloWorld”.

2. Click on the Create a new Xcode project option. If you don't see the
splash window, you should go to “File > New > New Project...” in
Xcode menu.

Xcode can be used to
develop both iOS and
Mac OSX applications.

These buttons are used to select
a template which Xcode uses
to generate some code to get

you started.

Task 1

Task: Create a new application in Xcode called “HelloWorld”.

3. Select the Single View Application template and click Next.

These fields describe your project.
We should fill them with

proper information.

You have three options for device family: iPhone, iPad and Universal.
A Universal application runs on both iPhone and iPad. In a Universal

Application, the iPad and the iPhone each has its own UI design. Xcode
provides tools for designing two different UIs in the same application.

This field is used to
uniquely identify
your application.

Storyboards and ARC
are new features available

in iOS 5 and later.

Task 1

Task: Create a new application in Xcode called “HelloWorld”.

4. Type in “HelloWorld” for the Product Name.

5. Type in “com.FMI.FirstName.LastName” for the Company Identifier.
Notice how Bundle Identifier changes as you type. You should obtain
something like “com.FMI.Radu.Ionescu.HelloWorld” as your bundle
identifier. Using an entity's reverse DNS lookup string is a pretty
good way to get a unique identifier.

6. Type in “HelloWorld” for Class Prefix. We don't want the names of
the classes generated by the template to be too generic. That's why
we specify this prefix. Usually we use the name of the application for
this prefix. In fact, older versions of Xcode would automatically do
this whether we wanted it or not.

7. Select “iPhone” for Device Family. Our first application is going to be
for the iPhone (not iPad).

Task 1

Task: Create a new application in Xcode called “HelloWorld”.

8. Check “Use Storyboard”. Storyboards are a new (iOS 5) way to
organize your MVC's Views. We are going to use them.

9. Check “Use Automatic Reference Counting”. ARC is a fantastic
upgrade to the compiler (in iOS 5) which causes it to generate all the
code necessary to manage the memory allocation of objects. We
definitely want ARC to be on!

10. We won't be creating Unit Tests for our first application so we are
going to leave the “Include Unit Tests” option unchecked.

11. Click Next.

“~/Developer/Apps” folder inside
the home directory. There

shouldn't be any other projects in it.

We will definitely be covering source control in this course.
But not for this first project, so leave this switch turned off.

Xcode wants to know where
to store this project's directory.

Task 1

Task: Create a new application in Xcode called “HelloWorld”.

12. Navigate to “~/Developer/Apps” folder inside the home directory.
There shouldn't be any other projects in it.

13. Click Create to create your project directory inside the
“~/Developer/Apps” folder.

Task 2

Task: Run the application in iPhone Simulator.

1. Check out the general structure of the project window and identify
the important sections: the Toolbar, the Tab bar, the Project
Navigator, the Details Editor and the Utilities Area.

Toolbar – Contains buttons to quickly build your application, select your scheme, show/hide sections.

Tab bar – Each tab can save your current work settings or restore previous work settings.

Project Navigator

It shows all the
files in your project

in a hierarchical
arrangement of

folders. The
arrangement of

folders is
conceptual, it does

not necessarily
match what’s in
the file system.

This area can also
show symbols,
search results,

breakpoints,
issues, etc. (see
the icons at the

top).

Utilities

The top part
of this area

shows information
(identity, attributes,
help, connections,
dimensions) about

 the currently
selected thing

(file, object, etc.)
at the left.

The bottom is a
library of items
(objects, code
snippets, file
templates).

Details (Editor)

It shows the content of the selected file in Project
Navigator. If the file is a code file (.h or .m), this area
will show the source code. If the file is a view (.xib)

or a storyboard it will show up in this area using
Interface Builder (which is integrated in Xcode). You
can also view the content of other iOS specific files

(such as .plists) or almost every type of file
that can be included in your project (such as images,

plain text, etc.).

Task 2

Task: Run the application in iPhone Simulator.

2. View the content of the “HelloWorldAppDelegate.h” file. This file
contains the declaration of instance variables, public properties and
public methods of the HelloWorldAppDelegate class. In
Objective-C we call this part the class interface.

Notice the class conforms to the UIApplicationDelegate protocol.
This protocol declares methods that are implemented by the
delegate of the singleton UIApplication object. These methods
provide you with information about key events in an application’s
execution such as when it finished launching, when it is about to be
terminated, when memory is low, and when important changes
occur. Implementing these methods gives you a chance to respond
to these system events and respond appropriately.

Superclass

The application window. Each iPhone application has a
singleton UIApplication object that has a reference to the

application window. All the content of the application must
be displayed in this window. However, the window usually

contains a hierarchy of views and layers.
Our application window contains a single view.

Class name

Comma separated list of protocols.
HelloWorldAppDelegate conforms to a

single protocol: UIApplicationDelegate.

The @interface compiler directive
indicates that this file contains the

interface of HelloWorldAppDelegate.

Task 2

Task: Run the application in iPhone Simulator.

3. To read more about the UIApplicationDelegate protocol hold
down the option key and click on the UIApplicationDelegate. A
pop-up window with detailed information should appear on the
screen.

Hold down the option key and click here
to see detailed information about this item.

Double-click here to open
the UIApplicationDelegate

full API documentation.

Task 2

Task: Run the application in iPhone Simulator.

4. To open the UIApplicationDelegate API reference in Organizer
double-click on the link displayed on the pop-up window. Read the
full documentation of the UIApplicationDelegate.

Notice that Organzier can also give you information
about the connected devices (installed certificates,
log information, installed apps, etc.), repositories

(integrated git control), projects (create and manage
snapshots) and archives (manage and share ad-hoc

builds or submit AppStore builds).

You are on the Documentation tab.

This is the Organizer window.

Scroll down and read all the information here.

There are two versions of each class:
one for iOS 5.0 and one for iOS 4.3.

Make sure you are reading
the right version (iOS 5.0).

Task 2

Task: Run the application in iPhone Simulator.

5. View the content of the “HelloWorldAppDelegate.m” file. This is the
implementation of HelloWorldAppDelegate. Notice the
superclass declaration is missing. Check if the methods declared by
the UIApplicationDelegate are implemented there.

Superclass declaration missing.

The @implementation compiler directive
indicates that this file contains the

implementation of HelloWorldAppDelegate.

Task 2

Task: Run the application in iPhone Simulator.

6. Inspect the Toolbar items. Run the application in iPhone Simulator.

Run the application from here.
 When you run the application in debug
mode, you can set breakpoints. You can
enable/disable all breakpoints from here.

If you press and hold this Run button,
other run options will be available.

This is the “scheme chooser”. It lets you
choose where to run your application. For

example, the iPhone Simulator, iPad
Simulator or on a device. Make sure

you choose iPhone 5.0 Simulator.

Show/Hide Navigator.

Show/Hide Utilities.

Open Organizer.

 This area provides information about
the project status. It lets know that
Xcode is building the application.

When it starts building the application,
the Stop button becomes active.

The Details Editor can be adjusted to display content
in 3 modes: Standard (selected right now),

Assistant (we'll cover it in a few moments) and
Version (to view more versions of the same file).

Task 2

Task: Run the application in iPhone Simulator.

7. Open the debugger/console.

 Xcode is running the application on Simulator.

iOS iPhone Simulator.

This bar that appeared at the bottom
is part of the console and debugger.

This button shows or hides the debugger/console.
Click it to see the debug area.

HelloWorld application
running on Simulator.

Blank View.

Task 2

Task: Run the application in iPhone Simulator.

8. Stop running the application. Notice that the debug area
automatically disappears when you stop running.

View console only.

Console

 Debugger Control: Pause

Stop running the
application from here.

You can also show/hide the debugger from here.

Clears the console.

Variables View

 Debugger Control: Step Over

 Debugger Control: Step In/Out View variables only.

Split view.

Task 3

Task: Add a label to display our greeting message to the user.

1. Open the MainStoryboard.storyboard file.

Our MVC's View is inside
MainStoryboard.storyboard.

Let’s open up and look at our MVC’s View
by clicking on MainStoryboard.storyboard.

 HelloWorldViewController.[hm] is
the code for our MVC's Controller.

All iOS applications use the MVC design pattern.
Our first application will only have a view and a controller.

We will discuss the MVC design pattern in detail later.

Task 3

Task: Add a label to display our greeting message to the user.

2. Open the Document Outline.

 You can view the Document Outline
 by clicking this button.

This should be selected.
If it’s not, that would explain why you

are not seeing your MVC’s View.

This is our MVC’s View.
It starts out blank, of course.

Task 3

Task: Add a label to display our greeting message to the user.

3. Hide back the Document Outline.

If you mouse over this button, you’ll see a tooltip
telling you that it will hide the Document Outline.
Click the button to hide the Document Outline.

This is the
Document Outline.

It contains a
hierarchical, iconic

view of all the
objects in your

MVC View.
We’re not going
to use it during

this first
application.

But you might
want to check

it out occasionally
as you build

this application.

Task 3

Task: Add a label to display our greeting message to the user.

4. Open the Assistant Editor.

We need to see our MVC Controller now. But we still want our MVC
View on screen at the same time. The way to have two things on the
screen at once is to use the Assistant Editor. It is shown/hidden
using the “butler” icon from the toolbar.

5. Check out the Navigator's bar items.

Logs
Every time you build/run,

a log of it is saved.
Access old ones here.

Click here to show the Assistant Editor.
When an MVC View is showing, it will by
 default bring up the View’s Controller.

That’s exactly what we want.

Issues
Compiler warnings/errors, etc.

Project Navigator
View files and libraries
included in your project.

Search
Find/replace in files in your Project.

Symbol Navigator
This will present you project symbols

(classes, methods, properties)
in a hierarchical view.

Task 3

Task: Add a label to display our greeting message to the user.

6. Hide the Project Navigator.

When the Assistant Editor is in Automatic
mode, it will always be trying to put something
sensible up in the right-hand side of the Editor.

We don’t need the Navigator at the far left,
so let’s hide it by turning this button off.

ALT-clicking on our Controller's header file
(HelloWorldViewController.h) would also
have brought it up in the Assistant Editor,

but it would have taken the Assistant
Editor out of "Automatic mode".

Task 3

Task: Add a label to display our greeting message to the user.

7. Study the header file of the HelloWorldViewController class.

Here is the header (.h) file for our MVC Controller.
It contains its public methods and properties and
also defines its superclass public methods and
properties (all Controllers in iOS inherit from

UIViewController).

UIKit.h imports all the iOS user-interface classes.
#import is like #include, but better.

Notice the @interface - @end syntax.

Let's make even more room for our code on
the right by dragging this center bar to the left.

Task 3

Task: Add a label to display our greeting message to the user.

8. Click on the header file. Study the items in the Utilities area.

9. Select the Object Library in Utilities area. We're going to start
building the user-interface in our MVC View. To do that, we'll need a
text label, a text field and a button. We get those from the Object
Library.

Media Library
Images, sounds, etc.

File Inspector
Shows information about the file

containing the selected item.

Quick Help
If the selected item at the left has some

documentation reference, this shows
a "summary" version of it.

The top bar will be darker gray if
the selected item is in this half

of the Assistant Editor.

Object Library
Buttons, text fields, controllers, etc.

File Template Library
Templates for storyboards, classes, etc.

Code Snippet Library
Snippets of code for common tasks etc.

Click on the Object Library
(it might already be selected).

Click here to select this item
in Assistant Editor.

Task 3

Task: Add a label to display our greeting message to the user.

10. Select the View on the left. Notice the items in the Utilities area
change. Study these items.

Size Inspector
Position and size the selected item.

Attributes Inspector
See and set attributes
of the selected item.

Note that the top bar is darker gray
when the View is selected.

Some objects
(those appropriate to dragging into your View)

should appear in the Object Library.

Click on your View to select it.

The Object Library can display the objects in a
list view (currently selected), or in a icons view.
The list view gives detailed information about
the objects, while the icons view allows you
to quickly select objects to add in your view.

Connections Inspector
Connections between your View and Controller.

Task 3

Task: Add a label to display our greeting message to the user.

11. Drag an UILabel from the Object Library to your View.

The UILabel class implements a read-only text view. In general, you
can use this class to draw one or multiple lines of static text, such as
those you might use to identify other parts of your user interface.
The base UILabel class provides control over the appearance of
your text, including whether it uses a shadow or draws with a
highlight.

Scroll down to find a Label object.

Start dragging the Label.

Notice the dashed blue lines that
Xcode displays as you drag which

help you line things up nicely.

Labels are instances of the
UILabel class in the iOS SDK.

Drag the Label from the Object Library to your View.

Task 3

Task: Add a label to display our greeting message to the user.

12. Resize the label to 280 width x 36 height pixels.

13. Open the Attributes Inspector.

Notice the little “handles” around the label.
These can be used to resize it.

That’s exactly what we’re going to do next.

This little indicator will show you
the exact size you’re resizing to.

Grab the lower right "handle"
on the label and resize it.

Use the dashed blue
guidelines to pick a good size.

Click on the Attributes Inspector. You should
see attributes of the Label you just created.

Task 3

Task: Add a label to display our greeting message to the user.

14. Change the alignment of the text in our greeting label to be
centered.

15. Set the font size to 24 (Helvetica).

Note that changes in the inspector
are reflected immediately in the View.

Change the alignment of the
text in our greetings label by

clicking on this button in the inspector.

Let's also make the font bigger.
Click this tiny up arrow to increase
the font size. Helvetica 24 is nice.

Task 3

Task: Add a label to display our greeting message to the user.

16. Edit the label's text and leave it blank.

We don't want our app to appear
with "Label" in its display!

So double-click on the label
to put it in an editing state.
Then delete the text inside.

You can also edit the label's text
in the Attributes Inspector.

Task 3

Task: Add a label to display our greeting message to the user.

17. Declare a property in the Controller for the newly added label. Our
Controller needs to be able to talk to its View. For example, in this
case, we need to be able to update the greeting label as the “Say
Hello” button (that we are going to add it in a few slides) is pressed.
We can make this connection between Controller and View directly
with the mouse.

HOLD DOWN CTRL while mousing down
and dragging a line from the text label
directly into the code of our Controller.

If you do not hold down the CTRL key,
this will not work.

You'll notice that as you CTRL-drag over your code,
an indicator will appear, making it easy to see exactly

where in the file your outlet code will be.

The label should look like this
after you have deleted the text.

Xcode now wants to know what kind of connection we want
to make between the Controller and this object in the View.

In this case, it has correctly guessed that we want an outlet.
An outlet is just a property of our Controller through which

we can talk to an element in our View.

The destination of this connection is our Controller
since that’s where we CTRL-dragged to.

Task 3

Task: Add a label to display our greeting message to the user.

18. Name the property “greetingLabel”.

19. Declare it as a weak pointer. An outlet is a pointer to an object (a
UILabel in this case).

A strong pointer means the UILabel will stick around until we are
done using the UILabel.

A weak pointer means the UILabel will only stick around as long as
somebody else has a strong pointer to it.

As soon as no one else has a strong pointer to an object that we have
a weak pointer to, that object will go away and our pointer to it will
be cleared and we won't be able to talk to it (because it will be
gone). Since this window already has a strong pointer to this
UILabel, weak is a good choice here.

Select the Weak storage.

We are going to name this outlet “greetingLabel”
(since it will display our greeting to the user).

Notice the type is automatically set to UILabel.

Click Connect to create a property
(called "greetingLabel") in our Controller

which will point to this UILabel in our View.

IBOutlet is just a word Xcode throws in here so that
it can remember that this is an outlet @property.
It doesn't actually mean anything to the compiler.

Xcode has added a @property to our
MVC Controller which is a pointer to a
UILabel object. It has also hooked this
@property up to the text label we

dragged out into our MVC View.

“greetingLabel” is the
name of this @property

UILabel * is the type of
this @property (that means

“pointer to a UILabel object”).nonatomic means
"not thread-safe"

(more on this later)

This property is a weak pointer.

Whenever our Controller
sends messages to the

greetingLabel @property,
 it will be talking to this
UILabel instance.

Task 3

Task: Add a label to display our greeting message to the user.

20. Highlight the label to check if the connection is done right.

Highlighted label.

Mouse over (i.e. hover the mouse over, do not click on)
this little icon to see where this @property is connected.

Notice that the label highlights.

Mousing over the only item in
the list will select the label too.

If you click on this icon, it will show you a list of
all the storyboards this property is hooked into.

Remember that we said that a single application
can support multiple UIs (e.g., iPhone and iPad)
It does this with multiple storyboards.This is how

a single Controller can support those different UIs.

Task 3

Task: Add a label to display our greeting message to the user.

20. Read the documentation of the UILabel class. Notice the
superclass is UIView (all UIKit objects inherit from this class).

Hold down the option key
and click on the UILabel.

Then click here to open the
documentation in Organizer.

Task 3

Task: Add a label to display our greeting message to the user.

21. Learn what are the properties of an UILabel object. Read the
details about the text property. We are going to use it later when
we will present the greetings on the display.

The superclass of UILabel is UIView.

This is the text property. Click here
to see details about this property.

Scroll down to see all the properties.

A brief description of the property.

Since when is this property available.

Scroll up to top to have a look at the entire
organization of this documentation page.

How is this property declared
in the UILabel interface.

It also gives you related sample code.

These are Xcode projects that
you can download and look into.

Task 4

Task: Add a text field for the user's name. We are going to let the user
enter his name in this text field.

1. Look for a text field in the Object Library.

In Object Library switch to icons view.

Here is the text field object.
Click on it.

This information window should appear
when you click on the text field.

Notice the type is UITextField.

Task 4

Task: Add a text field for the user's name. We are going to let the user
enter his name in this text field.

2. Drag an UITextField from the Object Library to your View.

A UITextField object is a control that displays editable text and
sends an action message to a target object when the user presses
the return button. You typically use this class to gather small
amounts of text from the user and perform some immediate action,
such as a search operation, based on that text.

Make sure it's under the label.

Align it with the previously
added label at the left.

Drag the Text Field from the Object Library to your View.

Task 4

Task: Add a text field for the user's name. We are going to let the user
enter his name in this text field.

3. Resize the text field width to 280 pixels.

4. Select the Attributes Inspector in Utilities area.

Make sure Attributes Inspector is selected.

Grab this right handle and
adjust the width to 280 pixels.

Task 4

Task: Add a text field for the user's name. We are going to let the user
enter his name in this text field.

5. Set the placeholder text to “type in your name” to let the user know
we would like to know his name.

6. Set the text alignment to center.

7. Set the text field correction to “No” so that it will not try to correct the
user's input.

8. Change the keyboard return key type to “Done”.

The placeholder is a text that appears inside
 the text field when the actual text is blank.

Set it to “type in your name”.

Click here to align the text to center.

Click here and choose “No” to prevent
the autocorrection of user's input.

Scroll down to the
Return Key attribute.

Notice the placeholder text
appears here as you type.

Notice the text field has a text property.
We are going to use this property to get

the user's input (that is his name).

We can also set the return key type
of the keyboard. We should choose

“Done” for the Return Key.

When the user taps inside the text field,
the system will automatically present

the keyboard. You can set the keyboard
type from here, but for this text field
we only need the default keyboard.

Task 4

Task: Add a text field for the user's name. We are going to let the user
enter his name in this text field.

9. Declare a property in the Controller for the added text field. We need
to be able to get the user's name from the text field and build the
greetings message with his name (e.g. “Hello Steve!”). Make this
connection between Controller and View directly with the mouse
using CTRL-dragging.

HOLD DOWN CTRL while mousing down
and dragging a line from the text field
directly into the code of our Controller.

Notice the indicator that appears to let you see
exactly where in the file your outlet code will be.

Task 4

Task: Add a text field for the user's name. We are going to let the user
enter his name in this text field.

10. Name the property “nameTextField”.

11. Declare it as a weak pointer.

Select the Weak storage.

We are going to name this outlet “nameTextField”
(since it will hold the user's name).

Notice the type is automatically set to UITextField.

Click Connect to create the property
in our Controller which will point

to this UITextField in our View.

Highlighted text field.

Mouse over this little icon to see
where this @property is connected.

Notice that the text field highlights.

UITextField * is the type of this @property
(that means “pointer to a UITextField object”).

Task 5

Task: Add a button that will trigger the greeting message.

1. Switch to the Controller's implementation.

Our Controller’s interface (header).

Click here to switch to our Controller's implementation
so we can make some more connections to our View.

Our Controller’s implementation.

Task 5

Task: Add a button that will trigger the greeting message.

2. Delete the code that we don't need which was automatically added
by Xcode. Make sure NOT to remove the @synthesize
declarations and the implementation of the viewDidUnload
method.

Xcode has added some extra code that
we don’t need for this application,
so select everything from after the

@synthesize nameTextField until the
viewDidUnload method and delete it.

Notice that the @implementation here
does not specify the superclass. Only the

@interface in the .h (header) file does that.

The @synthesize declarations
are very important.

We’ll cover them in a moment.

Select the code from after the viewDidUnload
method implementation all the way down to
(but not including) the @end. Then hit delete

to delete it.

Task 5

Task: Add a button that will trigger the greeting message.

3. Study the @synthesize declarations and the viewDidUnload
method implementation.

The @synthesize declarations were added by Xcode when we
created the greetingLabel and nameTextField properties. The
@synthesize declaration is used to generate accessor methods
(setter and getter) for a certain property.

When a low-memory condition occurs and the current view controller’s
views are not needed, the system may opt to remove those views
from memory. The viewDidUnload method is called after the view
controller’s view has been released and is your chance to perform
any final cleanup. If your view controller stores references to the
view or its subviews, you should use this method to release those
references and set those references to nil.

The viewDidUnload method sets the
greetingLabel and nameTextField
references to nil by calling the setters

generated with @synthesize. This code
was also automatically added to our

implementation when we CTRL-dragged
to create the outlets.

Note the @synthesize that Xcode automatically added to our Controller’s implementation
when it created the greetingLabel @property (it did this when we CTRL-dragged

to create the greetingLabel outlet). This @synthesize creates two methods
(greetingLabel and setGreetingLabel:). The method setGreetingLabel: is
used by iOS to hook the UILabel up to the greetingLabel @property at runtime

(i.e. set the value of the pointer). The method setGreetingLabel: is also used by us to
put the greeting message in this UILabel. @synthesize also creates an instance

variable to store this pointer.

The same happens for this @synthesize which creates two
methods (nameTextField and setNameTextField:).

As for the UILabel, the method setNameTextField: is used
by iOS to hook the UITextField up to the nameTextField
@propzerty at runtime. The method nameTextField is

used by us to get the user's name from the text field.

void is the return type of this method.
More about methods in a few moments.

Task 5

Task: Add a button that will trigger the greeting message.

4. Drag a Round Rect Button from the Object Library to your View.

An instance of the UIButton class implements a button on the touch
screen. A button intercepts touch events and sends an action
message to a target object when tapped. This class provides
methods for setting the title, image, and other appearance properties
of a button. By using these accessors, you can specify a different
appearance for each button state.

Make sure it's under the text field.

Align it at the left with the
previously added UI elements.

Drag a Button from the Object Library to your View.

Task 5

Task: Add a button that will trigger the greeting message.

5. Adjust the button width to 280 pixels.

6. Change the button's title to “Say Hello”.

Grab the middle-right "handle"
on the button and resize it. A width

of 280 points works very well as
it fits with the other UI elements.

Double-click on the button
to make its text editable.

Notice the button is focused
when you double-click on it.

Type-in “Say Hello” to set
the button's title.

Task 5

Task: Add a button that will trigger the greeting message.

7. Specify the action that our UIButton is going to send to our
Controller when the user touches it.

Remember that the term outlet refers to a @property through which
we send messages to something in our View from our Controller (for
example, greetingLabel is an outlet).

We use the term action to mean a method that is going to be sent from
an object in our View to our Controller when something interesting
happens in the user-interface.

HOLD DOWN CTRL while mousing down
and dragging a line from the button directly

to the text area where your code is.

Xcode correctly guesses that you
want to create an action with this
CTRL-drag rather than an outlet.

Task 5

Task: Add a button that will trigger the greeting message.

8. Enter “presentGreeting” as the name of the action message (which
makes sense since this button is going to be the button that triggers
the presentation of the greetings message).

This is the name of the action method.
Type in "presentGreeting" here.

This is the object to which the action
message will be sent. Our Controller.

This specifies the format
of the message.

This is the kind of touch event that
will cause this action to get sent.

Then press Connect (you can leave
the rest of the fields alone; the

defaults are fine for this button).

When you release the mouse (after
dragging), this dialog will appear.

Task 5

Task: Add a button that will trigger the greeting message.

9. Study the presentGreeting: method added by CTRL-dragging to
the Controller.

Notice the method has a parameter (called sender) with id type. You
might be surprised that this does not read id *. But that would
make no sense because the type id is already a pointer so id *
would be a pointer to a pointer. The type id does not mean "object
of any class", it means "pointer to an object of any class". Every time
the “Say Hello” button is touched, presentGreeting: is going to
be sent to our Controller with the UIButton itself as the message’s
sender argument.

In general, we want to use the type id because either we want to allow
any class of object to be passed into a method (uncommon) or
because the class of the object is "opaque" (it’s like a "cookie").

Every argument (like sender) to an
Objective-C method is preceded by
a part of the method's name (like
presentGreeting) and a colon.

id is the type of the argument sender.
id means "pointer to an object of any class".

IBAction is exactly the same as void
(i.e. this method does not return any value).
Xcode uses it instead of void just so it can
tell an action method from other methods

with a similar form.

The signature of the method
is presentGreeting:.

Task 5

Task: Add a button that will trigger the greeting message.

10. Highlight the button in Interface Builder.

Similar to an outlet, you can mouse over this little
icon and see which object(s) in your View send(s)
this message. Notice how the button highlights.

Highlighted button.

If you click this icon, you'll
see all the objects in all

storyboards which send this
action to your Controller.

And mousing over one in the list
will highlight it (just like mousing

over the icon does).

Task 5

Task: Add a button that will trigger the greeting message.

10. Right-click on the button to see its connection. When you start
building more complicated user-interfaces, it will be very important to
be able to see your outlet and action connections. You can do this
by right-clicking on any object in your MVC’s View.

When you right-click on the button
this pop-up window will appear.

This shows that the button
sends presentGreeting: to
HelloWorldViewController
(your Controller) when a touch

lifts up inside its borders.

You can CTRL-drag from
these little circles to

make connections too.

There are no outlets
which point to this button.

You can disconnect
this action by clicking

on this little x.

The Connection Inspector
will show all of this as well.

The whole View is highlighted.

Mouse over this connection and
you will see that the whole View

will highlight (that's its way of
showing you that this button sends

its message to the Controller).

Task 5

Task: Add a button that will trigger the greeting message.

11. Right-click on the greetingLabel to see its connection.

Right-click on the label.

This UILabel is connected
via the greetingLabel
outlet to your Controller.

Again, mousing over this connection
will highlight the whole view (that's

its way of showing you that this outlet
is connected to the Controller).

The whole View is highlighted again.

Task 5

Task: Add a button that will trigger the greeting message.

12. Right-click on the nameTextField to see its connection.

13. Notice the delegate outlet. A text field delegate responds to editing-
related messages from the text field. You can use the delegate to
respond to the text entered by the user and to some special
commands, such as when the return button is pressed.

Right-click on the text field.

This UITextField is connected
via the nameTextField
outlet to your Controller.

Events that this
text field can

send to its controller
are listed below.

The text field delegate
is not associated right now.

The whole View is highlighted again.

Again, mousing over this connection
will highlight the whole view.

Task 5

Task: Add a button that will trigger the greeting message.

14. Right-click on the icon that represents the Controller to see its
connection.

15. Mouse over the “Say Hello” button entry in the pop-up window.

16. Mouse over the greetingLabel outlet in the pop-up window.

Notice that the button highlights.

Right-click on this icon that
represents your Controller.

Then mouse over this
"Button - Say Hello" entry.

Notice that the greetingsLabel highlights.

Don't worry about this view outlet,
we'll explain it later in this course.

Then mouse over this outlet.

Notice that the text field highlights.

If it ever seems like your actions aren't being
sent or talking to your outlets from your code
does nothing, this is a good place to go check

to be sure everything is wired up correctly.

Occasionally you might accidentally hook something up to the
wrong action method name or hook something up to two different

actions at the same time, so check here if things seem to be
acting sort of messed up when it comes to outlets and actions.

Then mouse over this outlet.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

1. Switch back to HelloWorldViewController.m in Assitant Editor.

2. Hide the Utilities area.

Switch to the Controller's implementation.
We won't need the Utilities
area for a while, so close it.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

3. It is time to write the code inside presentGreeting: that will get
executed whenever the "Say Hello" button gets touched. Let's start
by declaring a local variable that will store the user's name.

Let's start by declaring a
local variable called name

which will be of type "pointer
to an NSString object".

Yes, we could say id name = here. But we
should use static typing whenever possible.

Remember that all Objective-C objects
are allocated in the heap and we keep

pointers to them. It would never be right
to say "NSString name" (without the *).

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

4. To store the user's name in the local variable you need to get the text
inside the text field.

To send a message to an Objective-C object we use a syntax that
starts with an open square bracket [, then a pointer to the object we
want to send the message to (nameTextField) then a space, then
the name of the message to send (text). The message sending
syntax ends with a] to match the [it started with.

When you agree with Xcode suggestion
you can hit Enter to autocomplete.

Start with an open square bracket.

Xcode tries diligently to help you as you type.
It is smart about sensing what's going on in your code.
Xcode is suggesting variables that start with "nam…".

This method has no arguments. We’ll
see a method with an argument later.

It seems that we have a problem!
This little triangle is a warning that

there’s a problem with this line of code.
A red dot here would mean an error
in the code (which won’t compile).

UITextField objects respond to the message
text which returns an NSString containing
the text that was typed in inside the text field.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

5. Click on the triangle to find out what warning is generated by our line
of code. Warnings and errors show up in Xcode as you write your
code. Although Xcode projects can compile even with warnings, it is
recommended to eliminate all warnings from your project.

Warning triangle appears here too.

Click on the triangle to find
out what the warning is.

Another place the
warning triangle appears.

This warning appears to be correct.
We do not (yet) use the local
variable name in this method.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

6. Add an NSLog() to print the name typed in by the user. A very
simple debugging technique is to log information to the console. This
is very easy to do in Xcode. There is a printf-like function whose
output goes to the console called NSLog().

The warning issue
disappeared from here too.

The rest of the arguments (like name)
to NSLog() are a comma-separated
list of the arguments which match up

with the % printf-like tokens.

Notice that our warning is gone
now that we are using name.

The first argument to NSLog() is
the printf-like formatting string.

Note, however, that it is an NSString
object, not a const char *,

so we need an @"" (a "constant"
NSString), not just plain "".

This printf-like formatting string only has one % element in it. And it’s a very
special one, just for Objective-C. "%@" means that the corresponding
argument to print is an object. Specifically it means "send the message
description to the object and use the results as the string to print".

Our argument in this case is name, an NSString. NSString returns itself
from its description method. All objects in iOS respond to the message

description because NSObject, the root of all classes in iOS, implements it.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

7. Run the application in the Simulator with NSLog() in place.

8. Show up the debug area.

Let’s run with this NSLog() in place.

Click here to show the
debug area at the bottom.

Notice that the console
starts out hidden.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

9. Hide the variables view in the debug area.

10. Clear the console.

11. Type in your name in the text field.

The cleared console.

Click here to show
only the console

(and hide the
variables view).

Clear the console output.

Touch here to see the keyboard.

Then type in your name.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

12. Press the “Say Hello” button. Notice the console output.

13. Stop the simulator.

 All console logs are timestamped.

Stop the Simulator.

You should see output in the
console from your NSLog().

Press this button to see
the message on the console.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

14. Get quick help for the text method of the UITextField. Xcode
contains extensive reference documentation for all methods/classes.
A quick lookup can be done simply by selecting a method or class
name and choosing "Quick Help for Selected Item" from the Help
menu.

Here you can see that the text
method in UILabel is actually
a @property (it’s the getter

of the text property).

Or you can hold down the option key
and click on a term to get quick help.
Hold down option and click on on the
text method to get quick help for it.

Useful key-binding here.
All key-bindings are settable

in Xcode's Preferences.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

15. Use dot notation for the text @property. It turns out that
@propertys are so important that there is a special Objective-C
syntax just for @property setters and getters. It’s called "dot
notation". We can express calling the getter of our @property
using dot notation instead. These are two syntactically different
expressions of exactly the same thing.

16. It's a good time to save the implementation file.

Now that we know that text is actually
a @property, let's use dot notation.

This grayed out icon means this file is not saved.
Click anywhere in this file and choose Save from

the File menu or use the CMD + S shortcut to save.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

17. Build a local NSString variable with the greeting message. Now
that we have the user's name, we need to update our display with
the greeting message. This actually only takes one line of code, but
we’ll break it down into steps. The first step is to append the user's
name to the greeting message.

Let's make a local variable
called greetingMessage

(of type "pointer to a NSString")
into which we'll just put our

greeting message.

Now we need to append the user's
name that was just typed in onto the

end of the greeting message.

stringByAppendingString: is a method in
the NSString class (obviously). It returns a new

NSString which is a copy of the receiving
NSString (@"Hello ,") with the argument

(name) appended onto the end.

@"Hello ," is a constant NSString. The
compiler creates an NSString object for you.

Notice the @! Without the @, "" means
 const char *. You almost never want a
const char * in iOS. You want NSString

objects. Forgetting the @ is a common
coding mistake.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

18. Build the greeting message without using the local variable name
(note that we actually don't need it).

19. Delete the first two lines of code in presentGreeting: method.

Then select where
we use it and paste.

There’s really no need for this local
variable name. So let's select and copy

its value (nameTextField.text).

Now we can delete the
previous lines of code.
Select these two lines
of code and hit delete.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

20. Rename the instance variable of the nameTextField @property
by adding an underscore. Accessing the synthesized instance
variable directly (and thus not calling the getter) is bad. There is no
compiler warning to help us notice that, but changing the name used
by @synthesize to create its instance variable will make it very
clear when we accidentally forget to use the getter.

21. Also rename the instance variable of the greetingLabel
@property.

There is no compiler warning
to help us notice the problem.

It will compile and run, but
there is danger here if we

don't use “self.”!

Prefixing the property name with
an underscore is the most common
naming convention for an instance
variable created by @synthesize.

We can avoid this potential accident by having
@synthesize use a different name for its

instance variable than the name of the property.
We do that using this equals-sign syntax.

Notice that there are errors now when
we access the instance variable directly.

Click here to see the error details.

The nameTextField instance
variable is not recognized anymore.

Xcode has a suggestion to replace nameTextField
with _nameTextField which will cause the error to

disappear, but it will not solve the problem. Only setters
and getters should access the instance variable directly!
There are rare exceptions, but for now, stick to this rule.

So we actually want to use the getter instead.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

22. Fix the error by using the getter to access the nameTextField
@property. A @property is nothing more than a setter method
and a getter method. The setter method will be called by the system
at run-time to wire this outlet up.

Fix the error by putting the self
in front of nameTextField.

This is calling the getter method
using dot notation.

Note that @synthesize also creates
some storage. Our storage in this case is
the _nameTextField instance variable.

It is perfectly legal to have multiple
dots in an expression like this.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

23. Set the greeting message as the label's text using normal method
notation.

We should be using dot notation
here, but we will (briefly) look at

it using method notation just
to be clear what we are doing.

We will use UILabel's text
@property's setter (setText:)

to set our greetingLabel's
text to the greetingMessage.

Note that the TAB key can be used to
jump to the next argument to a method.

This is what an argument looks like
after having been tabbed to. Now you

just type the argument you want
(greetingMessage in this case) and

it will replace the (NSString *).

Again, we would probably never
use this normal method syntax
to set a @property like this.

It’s just for illustrative purposes.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

24. Switch to using dot notation to set the UILabel's text @property.

Dot notation for setters is exactly the same
as dot notation for getters, it’s just that

they appear on the left-hand side of equals
signs rather than the right-hand side.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

25. Run the application in iOS Simulator to test it.

Let's Run and see if this works!

Tap on the text field and type in your name.

And the greeting shows up!

Then press the button.

But we should also hide the keyboard
when the button is pressed since the

user doesn't need it anymore.

Stop running
when you are done.

Task 6

Task: Implement the button action so that our application displays the
greeting message on the screen.

25. Dismiss the keyboard when the button is pressed. When the user
taps in a text field, that text field becomes the first responder and
automatically asks the system to display the associated keyboard. It
is your application’s responsibility to dismiss the keyboard at the
time of your choosing.

In general, you might dismiss the keyboard in response to a specific
user action, such as the user tapping a particular button in your user
interface. You might also configure your text field delegate to dismiss
the keyboard when the user presses the “return” key on the
keyboard itself. To dismiss the keyboard, you must send the
resignFirstResponder message to the text field that is currently
the first responder. Doing so causes the text field object to end the
current editing session and hide the keyboard.

26. Test if the keyboard hides when the button is pressed.

Notice the method
has no parameters.

Hold down the option key and
click on the method to get details.

Send the resignFirstResponder
message to the text field.

Run the application again.

Tap on the text field and type in your name.

Then press the button.

Now the keyboard
hides as it should.

You can Stop running
the application now.

Task 7

Task: Find out if the application has any problems that should be fixed.

1. Notice we can't dismiss (hide back) the keyboard when the return
key (“Done”) is pressed. The normal behavior is to dismiss the
keyboard when the return button is pressed.

2. The greeting message would look nice with an exclamation mark at
the end. At this moment the application doesn't look finished.

If you press the return button the keyboard
should hide. This doesn't happen!

It would be nice to have an
exclamation mark at the end.

Task 7

Task: Find out if the application has any problems that should be fixed.

3. If the user chooses not to type in his name, the application will
display an ugly message “Hello, “. In this case we should display a
friendly message (“Please enter your name!”) to ask the user for his
name.

It would be nice to see
“Please enter your name!”

instead of this ugly message.

You can Stop running
the application now.

Assignment 1

Assignment: Change the application behavior to hide the keyboard
when the return button is pressed.

Hint: Search for the “Did End On Exit” event of the nameTextField
(right click on the text field in Interface Builder). Set the
presentGreeting: action to this event. Note that you can set the
same action for two or more events (generated by different UI
elements).

Assignment 2

Assignment: Add the exclamation mark at the end of the greeting
message.

Hint: There are at least two possible solutions. You can either use the
stringByAppendingString: method twice or you can use the
NSString's stringWithFormat: class method. Check the
NSString documentation and look for stringWithFormat:.

Here is an example of how to use it:

NSString *aString = [NSString stringWithFormat:

 @"A string-%@. A float-%.2f",

 @"abc", 3.14159265];

// aString is "A string-abc. A float: 3.14"

Assignment 3

Assignment: Check if the user name is blank and put the “Please enter
your name!” message in this case.

Hint: Use the isEqualToString: method (for NSString objects) to
test if the nameTextField's text is equal to @”” (a blank string).
Look up this method in the NSString class documentation. Set the
label's text to @”Please enter your name!” if the name is
blank.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169

