

Lecture 8:
View Controller Lifecycle and UIKit

Developing Applications for iOS

Prof. Dr. Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● View Controller Lifecycle

When your controller hears about things and what you
should do about it.

● Image View

Kind of like “UILabel” for images.

● Web View

Complete browser in a view.

● Scroll View

Provides a moving “viewport” on a rectangular area that
has views (the scroll view’s subviews) in it.

View Controller Lifecycle

View Controllers have a Lifecycle

● A sequence of messages is sent to them as they progress through it.

Why does this matter?

● You very commonly override these methods to do certain work:

func viewDidLoad()

func viewWillAppear(_ animated: Bool)

func viewDidAppear(_ animated: Bool)

func viewWillDisappear(_ animated: Bool)

func viewDidDisappear(_ animated: Bool)

and many other methods.

View Controller Lifecycle

We have already talked about the first part of the lifecycle

● Creation

● This is done mostly either via a segue or storyboard’s:

instantiateViewController(withIdentifer:)

● Because of this, we rarely have to override UIViewController’s
designated initializer in iOS.

● Another option is awakeFromNib, but we rarely do that either.

● If you cannot define your views in a storyboard or a nib file, override
the loadView method to manually instantiate a view hierarchy
and assign it to the view property.

● There are better methods to initialize in: viewDidLoad,
viewWillAppear, viewDidAppear.

View Controller Lifecycle

● After instantiation and outlet-setting, viewDidLoad is called:

func viewDidLoad()

● This method is called regardless of whether the view hierarchy was
loaded from a nib file or created programmatically in the
loadView method.

● This is an exceptionally good place to put a lot of setup code.

● But be careful because the geometry of your view (its bounds) is not
set yet!

● If you need to initialize something based on the geometry of the view,
use the next method.

View Controller Lifecycle

● Just before the view appears on screen, you get notified:

func viewWillAppear(_ animated: Bool)

● When this is called, your bounds has been set (via your frame by
your superview).

● Your view will probably only get “loaded” once, but it might appear
and disappear a lot. So don’t put something in this method that
really wants to be in viewDidLoad.

● Otherwise, you might be doing something over and over
unnecessarily.

● Use this to optimize performance by waiting until this method (i.e. just
before view appears) to kick off an expensive operation (might
have to put up a spinning “loading” icon though).

● This method is for geometry-related initialization and lazy execution
for performance.

View Controller Lifecycle

● And you get notified when you will disappear off screen too. This is
where you put “remember what’s going on” and cleanup code.

override func viewWillDisappear(_ animated: Bool)

{

 super.viewWillDisappear(animated)
 // Call super in all the viewWill/Did... methods.

 /* Let’s be nice to the user and remember
 * the scroll position they were at */
 self.rememberScrollPosition()
 // We will have to implement this, of course.

 /* Do some other clean up now that we have
 * been removed from the screen. */
 self.saveDataToPermanentStore()
 /* But be careful not to do anything
 * time-consuming here, or app will be sluggish.
 * Do it in the did version or in a thread. */
}

View Controller Lifecycle

● There are “did” versions of both of the previous methods.

● You can override this method to perform additional tasks associated
with presenting the view:

func viewDidAppear(_ animated: Bool)

● You can override this method to perform additional tasks associated
with dismissing or hiding the view:

func viewDidDisappear(_ animated: Bool)

● If you override these methods, you must call super at some point in
your implementation.

View Controller Lifecycle

Frame changed?

● Here’s a good place to layout subviews manually (if struts and springs
are not enough):

func viewWillLayoutSubviews()

func viewDidLayoutSubviews()

● When a view’s bounds change, the view adjusts the position of its
subviews. Your View Controller can override these methods to
make changes before/after the view lays out its subviews.

● Called any time a view’s frame changed and its subviews were
thus re-layed out.

● For example, autorotation.

● You can reset the frames of your subviews here.

View Controller Initialization

Creating a UIViewController from a .xib file

● This is the old, iOS 4 way. Not covered in this class.

● You create a .xib file with the same name as your
UIViewController subclass. Then use init to create it.

● Designated initializer (only if you need to override it; use init
otherwise):

init(nibName nibNameOrNil: String?,
 bundle nibBundleOrNil: Bundle?)

View Controller Initialization

Creating a UIViewController’s UI in code (no .xib, no storyboard)

● Override the method func loadView() and set self.view.

● Do NOT implement loadView if you use a storyboard/.xib to create
the UIViewController.

● Do NOT set self.view anywhere else besides in loadView.

● Do NOT implement loadView without setting self.view (i.e. you
must set self.view here).

● You should NEVER call this method directly. The View Controller
calls this method when its view property is requested but is
currently nil.

View Controller Initialization

● Avoid awakeFromNib if possible.

● It is an acceptable place to initialize stuff for a UIViewController
from a storyboard /.xib.

● You can also put stuff in viewDidLoad, viewWillAppear or the
segue preparation code (prepare(forSegue:sender:))
instead.

UIView's frame

Who’s responsible for setting a UIView’s frame?

● The object that puts the UIView in a view hierarchy.

● In Interface Builder, you set all view’s frames graphically.

● You do this by dragging on the little handles (or from Size Inspector).

What about the frame passed to init(frame:)?

● If you’re putting it into a view hierarchy right away, pick the
appropriate frame.

● If you are not, then it doesn’t really matter what frame you choose
(but avoid CGRect.zero).

● The code that eventually does put you in a view hierarchy will have to
set the frame.

UIView's frame

Setting frames in viewDidLoad

● Recall that your final bounds are not set in viewDidLoad.

● If you create views in code in viewDidLoad, pick sensible frames
based on the view’s bounds then.

● But be sure to set struts/springs (UIView’s autoresizingMask
property).

● You specify the value of this mask by listing the constants described
in UIViewAutoresizing in an array:

view.autoresizingMask = [.flexibleWidth, .flexibleHeight]

● Think of adding something in viewDidLoad as the same as laying it
out in Interface Builder.

● In both cases, you have to anticipate that the top-level view’s bounds
will be changed.

UIImageView

A UIView subclass which displays a UIImage

● We covered how to create a UIImage in the lecture on Views.

How to set the UIImageView’s UIImage

Use this initializer:

init(image: UIImage?)

● It will set its frame size to match the image size. Note that the
designated initializer is still init(frame:) (inherited from the
UIView superclass).

● You can also set this property (but it will not adjust the frame size):

var image: UIImage? { get set }

UIImageView

Remember UIView’s contentMode property?

● It can be set to UIViewContentMode{Redraw,Top,Left,...}.

● UIViewContentModeScaleToFill is the default.

● Determines where the image appears in the UIImageView’s bounds
and whether it is scaled.

Highlighted image

var highlightedImage: UIImage? { get set }

var isHighlighted: Bool { get set }

UIImageView

Sequence of images forming an animation

● For animating more images, set the following property:

var animationImages: [UIImage]? { get set }

● UIImageView class provides controls to set the duration and frequency
of the animation:

var animationDuration: TimeInterval { get set }

var animationRepeatCount: Int { get set }

The default value is 0, which specifies to repeat the animation
indefinitely.

● You can also start and stop the animation:

func startAnimating()

func stopAnimating()

var isAnimating: Bool { get }

The startAnimating method always starts the animation from the first
image in the list.

WKWebView

A full Internet browser in a UIView

● Can use it not only to take your users to websites, but to display
PDFs, for example.

● Built on WebKit, an open source HTML rendering framework (started
by Apple).

● Supports JavaScript:

func evaluateJavaScript(_ javaScriptString: String,
 completionHandler: ((Any?, Error?) -> Void)? = nil)

● Example:

webView.evaluateJavaScript("document.getElementById('Id').
 innerText")
{ (result, error) in

 if error != nil
 {
 print(result!)
 }
}

WKWebView

● WKWebView automatically scales the content to fit the screen, but
you can also change the zoom level:

var allowsMagnification: Bool { get set }

Default is false. If true, then the user can use magnify gestures to
change the web view’s magnification. This can also be done
programmatically:

func setMagnification(_ magnification: CGFloat,
 centeredAt point: CGPoint)

● Property to get the scroll view it uses:

var scrollView: UIScrollView { get }

Can now set properties in the scroll view to control the scrolling
behavior of the web view.

● If you allow the user to move back and forward through the webpage
history, then you can use the goBack and goForward methods
as actions for buttons.

WKWebView

● Three ways to load up content:

func load(_ request: URLRequest) -> WKNavigation?

func loadHTMLString(_ string: String,
 baseURL: URL?) -> WKNavigation?

func load(_ data: Data,
 mimeType MIMEType: String,
 characterEncodingName: String,
 baseURL: URL) -> WKNavigation?

func loadFileURL(_ URL: URL,
 allowingReadAccessTo readAccessURL: URL)
 -> WKNavigation?

● Base URL is the “environment” to load resources out of (i.e., it’s the
base URL for relative URL’s in the data or HTML string).

● MIME type (Multimedia Internet Mail Extension) says how to interpret
the passed-in data.

Standard way to denote file types (like PDF). Think “e-mail
attachments” (that’s where the name MIME comes from).

URLRequest

URLRequest

init(url: URL,
 cachePolicy: URLRequest.CachePolicy = default,
 timeoutInterval: TimeInterval = default)

URL

● Basically like a String, but enforced to be “well-formed”.

● Examples: file://... or http://...

● In fact, it is the recommended way to specify a file name in the iOS
API.

URLRequest.CachePolicy

● Ignore local cache; ignore caches on the Internet; use expired
caches; use cache only (don’t go out onto the Internet); use cache
only if validated.

WKWebView

WKWebViewDelegate

● You can set the uiDelegate property to an object conforming to the
WKWebViewDelegate protocol if you want to control the opening of
new windows, augment the behavior of default menu items
displayed when the user clicks elements, and perform other user
interface-related tasks.

● Methods in the WKWebViewDelegate are:

func webView(_ webView: WKWebView,
 createWebViewWith configuration: WKWebViewConfiguration,
 for navigationAction: WKNavigationAction,
 windowFeatures: WKWindowFeatures) -> WKWebView?

func webView(_ webView: WKWebView,
 runJavaScriptConfirmPanelWithMessage message: String,
 initiatedByFrame frame: WKFrameInfo,
 completionHandler: @escaping (Bool) -> Void)

func webViewDidClose(_ webView: WKWebView)

WKWebView

WKNavigationDelegate

● You can set the navigationDelegate property to an object
conforming to the WKNavigationDelegate protocol if you want
to implement custom behaviors that are triggered during a web
view's process of accepting, loading, and completing a navigation
request.

● Methods in the WKWebViewDelegate are:

func webView(_ webView: WKWebView,

 didCommit navigation: WKNavigation!)

func webView(_ webView: WKWebView,

 didFail navigation: WKNavigation!,

 withError error: Error)

func webView(_ webView: WKWebView,

 didFinish navigation: WKNavigation!)

UIScrollView

How do you create one?

● Just like any other UIView. Drag out in a storyboard or use
init(frame:).

● Or select a UIView in your storyboard and choose “Embed In >
Scroll View” from Editor menu.

● Or add your “too big” UIView using addSubview like this:

let bigImage = UIImage(named: "bigImage.jpg")
let imageView = UIImageView(image: bigImage)
// now imageView.frame.size is equal to bigImage.size

let frame = CGRect(x: 0,
 y: 0,
 width: self.view.frame.size.width,
 height: self.view.frame.size.width)
let scrollView = UIScrollView(frame: frame)

scrollView.addSubview(imageView)
// add more subviews if you want

UIScrollView

● All of the frames of the subviews will be in the UIScrollView’s
content area’s coordinate system.

● (0,0) is the upper left corner of the scroll view.

● Width and height are given by contentSize.width and
contentSize.height.

● Don’t forget to set the contentSize!

● Common mistake is to do the previous lines of code (or embed in
Interface Builder) and forget to say:

scrollView.contentSize = imageView.bounds.size

UIScrollView

Scrolling programmatically

func scrollRectToVisible(_ rect: CGRect,
 animated: Bool)

Other things you can control in a scroll view

● Control whether scrolling is enabled through the scrollEnabled
property.

● Lock scroll direction to user’s first “move” by setting the
directionalLockEnabled property.

● The style of the scroll indicators are set via the indicatorStyle
property. (call flashScrollIndicators when your scroll view
appears).

● Whether the actual content is “inset” from the scroll view’s content
area (contentInset property).

● Note that UIScrollView is the superclass of several UIKit classes
including UITableView and UITextView.

UIScrollView

Zooming

● All UIViews have a property (transform) which is an affine transform
(translate, scale, rotate). Scroll view simply modifies this transform
when you zoom.

● Zooming is also going to affect the scroll view’s contentSize and
contentOffset.

● Will not work without minimum / maximum zoom scale being set

scrollView.minimumZoomScale = 0.5 // half its normal size

scrollView.maximumZoomScale = 2.0; // twice its normal size

● Will not work without delegate method to specify view to zoom:

func viewForZooming(in scrollView: UIScrollView) -> UIView?

If your scroll view only has one subview, you return it here.

More than one subview? It's up to you then.

UIScrollView

Zooming programmatically

var zoomScale: CGFloat { get set }

func setZoomScale(_ scale: CGFloat, animated: Bool)

func zoom(to rect: CGRect, animated: Bool)

Lots and lots of delegate methods!

● The scroll view will keep you up to date with what’s going on.

● Example: delegate method will notify you when zooming ends

func scrollViewDidEndZooming(_ scrollView: UIScrollView,
 with view: UIView?,
 atScale scale: CGFloat)

● If you redraw your view at the new scale, be sure to reset the affine
transform back to identity.

Next Time

iDevice Capabilities:

● Core Location: GPS + Compass

● Accelerometer

● Map Kit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

