

Lecture 10:
Managing and Storing Data

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● Property Lists

● Archiving Objects

● Filesystem Storing

● SQLite

● Closures (recap)

● Grand Central Dispatch

● URL Requests

Property Lists

Persistence

● How to make things stick around between launchings of your app
(besides NSUserDefaults)

Property Lists

● A Property List is any graph of objects containing only the following
classes: NSArray, NSDictionary, NSNumber, NSString,
NSDate, NSData.

● Use the following methods in NSArray or NSDictionary:

func write(to url: URL, atomically: Bool) -> Bool

init?(contentsOf url: URL)

● Or NSUserDefaults if appropriate.

● Also NSPropertyListSerialization converts Property Lists
to/from NSData.

Archiving

There is a mechanism for making any object graph persistent

● Not just graphs with NSArray or NSDictionary (or other
Foundation classes) in them.

● For example, the view hierarchies you build in Interface Builder.

Those are obviously graphs of very complicated objects.

● Requires all objects in the graph to implement NSCoding protocol:

func encode(with aCoder: NSCoder)

init?(coder aDecoder: NSCoder)

● It is extremely unlikely you will use this in this course. Certainly not
during the labs.

● There are other, simpler, (or more appropriate), persistence
mechanisms that we are about to discuss.

Archiving
● Object graph is saved by sending all objects encode(with:).

func encode(with aCoder: NSCoder)
{
 super.encode(with: coder)
 aCoder.encode(2.0, forKey: "scale")
 aCoder.encode(CGPoint(x: 0, y: 0), forKey: "origin")
 aCoder.encode(object, forKey: "object")
}

Absolutely, must call super’s version or your superclass’s data won’t get
written out!

● Object graph is read back in with init(coder:).

required init?(coder aDecoder: NSCoder)
{
 super.init(with: aDecoder)
 scale = aDecoder.decodeFloat(forKey: "scale")
 object = aDecoder.decodeObject(forKey: "object")
 origin = aDecoder.decodeCGPoint(forKey: "origin")
 // notice that the order does not matter
}

Archiving

NSKeyed{Un}Archiver classes are used to store/retrieve graph

● Storage and retrieval is done to NSData objects.

● NSKeyedArchiver stores an object graph to an NSData:

class func archivedData(withRootObject rootObject: Any)->Data

● NSKeyedUnarchiver retrieves an object graph from an NSData:

class func unarchiveObject(with data: Data) -> Any?

What do you think this code does?

var obj = ...;
var data = NSKeyedArchiver.archivedData(withRootObject: obj)
var copy = NSKeyedUnarchiver.unarchiveObject(with: data)

● It makes a “deep copy” of object. But beware, you may get more or
less than you expect. Object graphs like “view hierarchies” can be
very complicated.

App Sandbox

● Your application can see the iOS file system like a normal Unix file
system.

● It starts with the root directory: /.

● There are file protections, of course, like normal Unix, so you can’t
see everything.

You can only write inside your “Sandbox”. Why?

● Security - so no one else can damage your application.

● Privacy - so no other applications can view your application’s data.

● Cleanup - when you delete an application, everything its ever written
goes with it.

App Sandbox

The App “Sandbox”

● As part of the sandboxing process, the system installs your app in its
own sandbox directory. It acts as the home for the app and its
data.

What’s in this “Sandbox”

● Application bundle directory (binary, .storyboards, .PNGs, etc.). This
directory is not writeable.

● Documents directory. This is where you store permanent data created
by the user.

● Caches directory. Store temporary files here (this is not backed up by
iTunes).

● Other directories (check out NSSearchPathDirectory in the
documentation).

App Sandbox

File System

What if you want to write to a file you ship with your app?

● Copy it out of your application bundle into the documents (or other)
directory to make it writeable.

How do you get the paths to these special sandbox directories?

● Use this FileManager method:

func urls(for directory: FileManager.SearchPathDirectory,
 in domainMask: FileManager.SearchPathDomainMask) -> [URL]
// domainMask is usually NSUserDomainMask

● Notice that it returns an Array of paths (not a single path).

Since the file system is limited in scope, there is usually only one path in
the array in iOS. No user home directory, no shared system
directories (for the most part), etc. Thus you will almost always just
use lastObject (for simplicity).

● Examples of SearchPathDirectory values: documentDirectory,
cachesDirectory, autosavedInformationDirectory, etc.

NSFileManager

● Provides utility operations (reading and writing is done via Data).

● Check to see if files exist; create and enumerate directories; move, copy,
delete, replace files.

● Thread safe (as long as a given instance is only ever used in one
thread).

● Just init an instance and start performing operations. If you don't use
the delegate you can use the default one:

var manager = FileManager.default

func createDirectory(atPath path: String,
 withIntermediateDirectories createIntermediates: Bool,
 attributes: [String : Any]? = nil) throws
func fileExists(atPath path: String) -> Bool
func isReadableFile(atPath path: String) -> Bool
func contentsOfDirectory(atPath path: String)
 throws -> [String]

● Has a delegate with lots of “should” methods (to do an operation or
proceed after an error). Check out the documentation.

File System

NSString

● Path construction methods and reading/writing strings to files:

var lastPathComponent: String { get }

class func path(withComponents components: [String]) ->
String

func appendingPathComponent(_ str: String) -> String

var deletingPathExtension: String { get }

func write(toFile path: String,
 atomically useAuxiliaryFile: Bool,
 encoding enc: UInt) throws
// encoding can be ASCII, UTF-8, etc.

init(contentsOfFile path: String,
 usedEncoding enc: UnsafeMutablePointer<UInt>?) throws

● And plenty more. Check out the documentation.

SQLite

SQL in a single file

● Fast, low memory, reliable.

● Open Source, comes bundled in iOS.

● Not good for everything (e.g. not video or even serious
sounds/images).

● Not a server-based technology (not great at concurrency, but usually
not a big deal on a phone).

● Used in countless applications across many platforms, SQLite is
considered a standard for lightweight embedded SQL database
programming.

● SQLite is a C API, so you need a Bridging Header in order to use it
from Swift (not going into details, but you should look at this).

Closures

● Closures are self-contained blocks of functionality that can be
passed around and used in your code.

● A closure is a sequence of statements inside {}.

● Usually included in-line with the calling of method that is going to
use the block of code.

● Very smart about local variables, referenced objects, etc. The
closure is able to make use of variables from the same scope in
which it was defined.

● Using closures in your iOS (and Mac) applications allows you to
attach arbitrary code to Apple-provided methods.

● Similar in concept to delegation, but passing short in-line blocks of
code to methods is often more convenient and elegant.

Closures

Functions are actually special cases of closures. Closures take one
of three forms:

● Global functions are closures that have a name and do not capture
any values.

● Nested functions are closures that have a name and can capture
values from their enclosing function.

● Closure expressions are unnamed closures written in a lightweight
syntax that can capture values from their surrounding context.

Closures

● Swift’s standard library provides a method called sorted(by:),
which sorts an array of values of a known type, based on the
output of a sorting closure that you provide. In the following
example, we are sorting an array of String values, and so the
sorting closure needs to be a function of type (String,
String) -> Bool:

let names = ["Radu", "Alex", "Eva", "Dan"]

func backward(_ s1:, _ s2: String) -> Bool {

 return s1 > s2

}

var reversed = names.sorted(by: backward)

● // reversed is ["Radu", "Eva", "Dan", "Alex"]

Closures
● The example below shows a closure expression version of the

backward(_:_:) function from the previous slide:

reversed = names.sorted(by: {

 (s1: String, s2: String) -> Bool in

 return s1 > s2

})

● Because the sorting closure is passed as an argument to a
method, Swift can infer the types of its parameters and the type
of the value it returns. Because all of the types can be inferred,
the return arrow (->) and the parentheses around the names of
the parameters can also be omitted:

reversed = names.sorted(by: { s1, s2 in

 return s1 > s2

})

Closures

● Single-expression closures can implicitly return the result of their
single expression by omitting the return keyword from their
declaration, as in this version of the previous example:

reversed = names.sorted(by: { s1, s2 in s1 >
s2 })

● Swift automatically provides shorthand argument names to inline
closures, which can be used to refer to the values of the
closure’s arguments by the names $0, $1, $2, and so on.

● If you use these shorthand argument names within your closure
expression, you can omit the closure’s argument list from its
definition. The in keyword can also be omitted:

reversed = names.sorted(by: { $0 > $1 })

Closures

● If you need to pass a closure expression to a function as the
function’s final argument and the closure expression is long, it
can be useful to write it as a trailing closure instead:

func someFunction(closure: () -> Void) {
 // function body goes here
}

// Calling without using a trailing closure:
someFunction(closure: {
 // closure's body goes here
})

// Calling with a trailing closure instead:
someFunction() {
 // trailing closure's body goes here
}

Closures

● The string-sorting closure from the previous slides can be written
outside of the sorted(by:) method’s parentheses as a trailing
closure:

reversed = names.sorted() { $0 > $1 }

● If a closure expression is provided as the function or method’s only
argument and you provide that expression as a trailing closure,
you do not need to write a pair of parentheses after the function:

reversed = names.sorted { $0 > $1 }

Closures

● A closure can capture constants and variables from the
surrounding context in which it is defined. The closure can then
refer to and modify the values of those constants and variables
from within its body, even if the original scope that defined the
constants and variables no longer exists:

func makeAdder(amount: Int) -> () -> Int {
 var runningTotal = 0
 func adder() -> Int {
 runningTotal += amount
 return runningTotal
 }
 return adder
}
let addTen = makeAdder(amount: 10)
addTen() // returns a value of 10
addTen() // returns a value of 20

Closures

Creating a type for a variable that can hold a closure

● Closures are kind of like “objects” with an unusual syntax for
declaring variables that hold them.

● Usually if we are going to store a block in a variable, we typealias
a type for that variable:

typealias PredicateHandler = ((Int) -> Bool)

● This declares a type called PredicateHandler for variables which
can store a closure. Specifically, a closure which takes an Int as
its only argument and returns a Bool.

Returns a Bool.There is an Int argument.

Closures

Creating a type for a variable that can hold a block

● Then we could declare a variable of this type and give it a value:

var isEven: PredicateHandler = {value in
 return value % 2 == 0
}

● And then use the variable isEven like this:

var newRoot = cleanTree(head: root,
 predicate: isEven)

● You don’t have to typealias, for example, the following is also a
legal way to create isEven:

var isEven: ((Int) -> Bool) = {value in
 return value % 2 == 0
}

Memory Cycles (a bad thing)

● What if you had the following property in a class?
var predicate: PredicateHandler?

● And then tried to do the following in one of that class’s methods?
self.predicate = {value in
 return value % self.divisor == 0
}

● We said that all objects referenced inside a block will stay in the heap
as long as the closure does. In other words, closures keep a
strong pointer to all objects referenced inside of them.

● In this case, self is an object reference in this block. Thus the block
will have a strong pointer to self.

● But notice that self also has a strong pointer to the block (through
its predicate property)!

● This is a serious problem. Neither self nor the block can ever
escape the heap now.

● That’s because there will always be a strong pointer to both of them
(each other’s pointer). This is called a memory “cycle”.

Memory Cycles Solution

● You’ll recall that local variables are always strong.

● That’s okay because when they go out of scope, they disappear, so
the strong pointer goes away.

● But there’s a way to declare that a local variable is unowned/weak:

self.predicate = {[unowned self] value in
 return value % self.divisor == 0
}

● This solves the problem because now the closure only has an
unowned pointer to self.

● Note that self still has a strong pointer to the closure, but that’s
okay.

● As long as someone in the universe has a strong pointer to this
self, the closure’s pointer is good. And since the closure will not
exist if self does not exist (since predicate won’t exist), all is
well!

Closures

A closure is an anonymous inline collection of code that:

● Has a typed argument list just like a function.

● Has an inferred or declared return type.

● Can capture state from the lexical scope within which it is defined.

● Can modify the state of the scope.

● Can share the potential for modification with other blocks defined
within the same lexical scope.

Closures

When do we use closures in iOS?

● Enumeration

● View Animations (this is really nice and easy)

● Sorting (sort this thing using a block as the comparison method)

● Notification (when something happens, execute this block)

● Completion handlers (when you are done doing this, execute this
block)

● And a super-important use: Multithreading

Using the Grand Central Dispatch (GCD) API.

Grand Central Dispatch

The basic idea is that you have queues of operations

● The operations are specified using blocks.

● Most queues run their operations serially (a true “queue”). We’re only
going to talk about serial queues.

The system runs operations from queues in separate threads

● Though there is no guarantee about how/when this will happen.

● All you know is that your queue’s operations will get run (in order) at
some point. The good thing about this is that if your operation
blocks, only that queue will block.

● Other queues (like the main queue, where UI is happening) will
continue to run.

So how can we use this to our advantage?

● Get blocking activity (e.g. network) out of our user-interface (main)
thread. Do time-consuming activity concurrently in another thread.

Queue Types

GCD provides three main types of queues:

● Main queue: runs on the main thread and is a serial queue.

● Global queues: concurrent queues that are shared by the whole
system. There are four such queues with different priorities: high,
default, low, and background. The background priority queue is I/O
throttled.

● Custom queues: queues that you create which can be serial or
concurrent. These actually trickle down into being handled by one
of the global queues.

Synchronous versus Asynchronous

● With GCD, you can dispatch a task either synchronously or
asynchronously:

1) A synchronous function returns control to the caller after the task
is completed.

2) An asynchronous function returns immediately, ordering the task
to be done but not waiting for it. Thus, an asynchronous function
does not block the current thread of execution from proceeding
on to the next function.

Grand Central Dispatch

Some important functions in the GCD API

● Creating and releasing serial queues:

init(__label label: UnsafePointer<Int8>?,
 attr: __OS_dispatch_queue_attr?)

● Putting blocks in the queue:

func async(execute workItem: DispatchWorkItem)

func sync(execute workItem: DispatchWorkItem)

func asyncAfter(deadline: DispatchTime,
 qos: DispatchQoS = default,
 flags: DispatchWorkItemFlags = default,
 execute work: @escaping () -> Void)

● Getting the global or main queue:

class func global(qos: DispatchQoS.QoSClass = default)
 -> DispatchQueue

class var main: DispatchQueue { get }

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

func viewWillAppear(animated: Bool)
{
 do {
 let data = try Data(contentsOf: imageURL!)
 let image = UIImage(data: data)
 self.imageView!.image = image!
 self.scrollView!.contentSize = image!.size
 }
 catch { }
}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

func viewWillAppear(animated: Bool)
{

 do {
 let data = try Data(contentsOf: imageURL!)
 let image = UIImage(data: data)
 self.imageView!.image = image!
 self.scrollView!.contentSize = image!.size
 }
 catch { }

}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

func viewWillAppear(animated: Bool)
{
 let queue = DispatchQueue(label: "Image Downloader")

 do {
 let data = try Data(contentsOf: imageURL!)
 let image = UIImage(data: data)
 self.imageView!.image = image!
 self.scrollView!.contentSize = image!.size
 }
 catch { }

}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

func viewWillAppear(animated: Bool)
{
 let queue = DispatchQueue(label: "Image Downloader")
 queue.async {

 do {
 let data = try Data(contentsOf: imageURL!)
 let image = UIImage(data: data)
 self.imageView!.image = image!
 self.scrollView!.contentSize = image!.size
 }
 catch { }
 }
}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

func viewWillAppear(animated: Bool)
{
 let queue = DispatchQueue(label: "Image Downloader")
 queue.async {

 do {
 let data = try Data(contentsOf: imageURL!)
 let image = UIImage(data: data)
 self.imageView!.image = image!
 self.scrollView!.contentSize = image!.size
 }
 catch { }
 }
}

● Problem: UIKit calls can only happen in the main thread!

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

func viewWillAppear(animated: Bool)
{
 let queue = DispatchQueue(label: "Image Downloader")
 queue.async {

 do {
 let data = try Data(contentsOf: imageURL!)
 let image = UIImage(data: data)

 self.imageView!.image = image!
 self.scrollView!.contentSize = image!.size

 }
 catch { }
 }
}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

func viewWillAppear(animated: Bool)
{
 let queue = DispatchQueue(label: "Image Downloader")
 queue.async {

 do {
 let data = try Data(contentsOf: imageURL!)
 let image = UIImage(data: data)

 DispatchQueue.main.async {

 self.imageView!.image = image!
 self.scrollView!.contentSize = image!.size
 }
 }
 catch { }
 }
}

Performing URL Requests

URLRequest

init(url: URL,
 cachePolicy: URLRequest.CachePolicy = default,
 timeoutInterval: TimeInterval = default)

URL

● Basically like an String, but enforced to be “well-formed”.

● Examples: file://... or http://...

● In fact, it is the recommended way to specify a file name in the iOS
API.

init?(string: String)
init(fileURLWithPath path: String, isDirectory: Bool)

URLRequest.CachePolicy

● Ignore local cache; ignore caches on the internet; use expired
caches; use cache only (don’t go out onto the internet); use cache
only if validated.

Performing URL Requests

URLSession

● API for downloading content.

● Provides a rich set of methods for supporting authentication and
background downloads.

func dataTask(with request: URLRequest,
 completionHandler: @escaping (Data?, URLResponse?,
 Error?) -> Void) -> URLSessionDataTask

URLSessionTask

● Base class for tasks in a URL session.

● Tasks are always part of a session; you create a task by calling one
of the task creation methods on an URLSession object.

func resume()
func cancel()
func suspend()
var state: URLSessionTask.State { get }
var priority: Float { get set }

JSON Serialization

● You use the JSONSerialization class to convert JSON to
Foundation objects and convert Foundation objects to JSON.

● An object that may be converted to JSON must have the following
properties:

1. The top level object is an Array or Dictionary.
2. All objects are instances of String, Number, Dictionary,

Array.
3. All dictionary keys are instances of String.
4. Numbers are not NaN or infinity.

● From Data to JSON:

class func jsonObject(with data: Data,
 options opt: JSONSerialization.ReadingOptions = [])
 throws -> Any

● From JSON to Data:

class func data(withJSONObject obj: Any,
 options opt: JSONSerialization.WritingOptions = [])
 throws -> Data

Performing URL Requests
let url = URL(string: "http://test.com/restaurants.json")
let session = URLSession.shared
var request = URLRequest(url: url!,
 cachePolicy: .reloadIgnoringLocalCacheData,
 timeoutInterval: 90.0)
request.httpMethod = "GET"
let task = session.dataTask(with: request)
{(data, response, error) in
 if let error = error { print(error) }
 else if let response = response, let data = data
 {
 let httpResponse = response as! HTTPURLResponse
 print("Status Code = \(httpResponse.statusCode)")

 do {
 let json = try JSONSerialization.jsonObject(with: data,
 options: [.allowFragments, .mutableContainers])

 let dict = json as! [String: Any]
 print("\(dict)")
 }
 catch { print("The received JSON is not well-formatted.") }
 }
}
task.resume()

What should you study next?
● Core Data

● Notification Center

● Modal View Controllers

● Core Motion (gyro, magnetometer)

Measuring the device’s movement.

● UITextField, UITextView, UIActivityViewContoller

● UIView Animation

● UIImagePickerController

Getting images from the camera or photo library.

● NSTimer

Perform scheduled tasks on the main thread.

● iPad and Universal Applications

There are specific Navigation and View Controllers.

● Metal / Open GL ES

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

