Developing Applications for iOS

Lecture 9:
Persistence and Blocks

Radu lonescu
raducu.ionescu@gmail.com
Faculty of Mathematics and Computer Science
University of Bucharest

e, 4
3 2
-H'l
=
— _4._
I
1
i
_Il _" -
I
|}]~
wLLR
L
i -y
_.‘i__.
-, v
= s\
[1
e —
U]
-E__\

Content

Property Lists
Archiving Objects
Filesystem Storing
SQLite

Blocks

Grand Central Dispatch

Property Lists

Persistence

How to make things stick around between launchings of your app
(besides NSUser Def aul t s)

Property Lists

A Property List is any graph of objects containing only the following
classes: NSArray, NSDictionary, NSNunber, NSString,
NSDat e, NSDat a.

Use witeToURL: atomcally: andinitWthContentsO URL:
in NSArray or NSDi cti onary.

Or NSUser Def aul t s if appropriate.

Also NSPropertyLi stSerialization converts Property Lists
to/from NSDat a.

|

- ;
=~

|
|

Archiving L

There is a mechanism for making any object graph persistent E o | x

= ;
=~

Not just graphs with NSArray or NSDi ctionary (or other |
Foundation classes) in them. L

For example, the view hierarchies you build in Interface Builder.

Those are obviously graphs of very complicated objects.

Requires all objects in the graph to implement NSCodi ng protocol:
- (voi d)encodeW t hCoder: (NSCoder *)coder;
- I nitWthCoder: (NSCoder *)coder,; s

It is extremely unlikely you will use this in this course. Certainly not
during the labs.

There are other, simpler, (or more appropriate), persistence
mechanisms that we are about to discuss.

Archiving

« Object graph is saved by sending all objects encodeW t hCoder : .
- (voi d) encodeW t hCoder : (NSCoder *)coder
{

[super encodeW t hCoder: coder];

[coder encodeFl oat:scale forKey: @scal e’];

[coder encodeCGPoint:origin forKey: @origin’];

[coder encode(bj ect: expression forKey: @expression”];

}

]

Ir

rrm

1 o |
o

Absolutely, must call super ’s version or your superclass’s data won't get £l

written out!

« Object graph is read back in with al | oc/i ni t Wt hCoder : .
- 1 nit Wt hCoder: (NSCoder *)coder

self = [super initWthCoder: coder];

scal e = [coder decodeFl oat ForKey: @scal e”];

expressi on = [coder decode(hj ect For Key: @ expressi on’];
origin = [coder decodeCGPoi nt ForKey: @origin’];

/'l notice that the order does not matter

Archiving

NSKeyed{ Un} Ar chi ver classes are used to store/retrieve graph
« Storage and retrieval is done to NSDat a objects.

« NSKeyedAr chi ver stores an object graph to an NSDat a:

+ (NSData *) archi vedDat aW t hRoot Obj ect :
(1d <NSCoder >) r oot (bj ect ;

« NSKeyedUnar chi ver retrieves an object graph from an NSDat a:
+ (i d <NSCoder >)unarchi veObj ect Wt hDat a: (NSDat a *) dat a;

What do you think this code does?

| d <NSCoder > object = ..
NSDat a *data =

[NSKeyedAr chi ver archi vedDat aW t hRoot (bj ect : obj ect];
| d <NSCoder > dup =

[NSKeyedAr chi ver unarchi veObj ect Wt hDat a: dat aj ;

* It makes a “deep copy” of obj ect . But beware, you may get more or less

than you expect. Object graphs like “view hierarchies” can be very
complicated.

|
|

App Sandbox

Your application can see the iOS file system like a normal Unix file
system.

It starts with the root directory: /.

There are file protections, of course, like normal Unix, so you can'’t
see everything.

You can only write inside your “Sandbox”. Why?
Security - so no one else can damage your application.
Privacy - so no other applications can view your application’s data.

Cleanup - when you delete an application, everything its ever written
goes with it.

o |

App Sandbox

The App “Sandbox”

As part of the sandboxing process, the system installs your app in its
own sandbox directory. It acts as the home for the app and its data.

What’s in this “Sandbox”

Application bundle directory (binary, .storyboards, .PNGs, etc.). This
directory is not writeable.

Documents directory. This is where you store permanent data created
by the user.

Caches directory. Store temporary files here (this is not backed up by
iTunes).

Other directories (check out NSSearchPat hDirectory in the
documentation).

|

™ I 1
|
] .
i
=

I .?I .

™
m|m
=Y]

- wlg - R n
] L

-1

~r

;a1

= ;
=~

-

i

S i

App Sandbox

App Sandbox

—- A MyApp.app

s = Documents
= Library
— il tmp
App Sandbox
-\ fpp -~
App Sandbox

:-._f':

File System

What if you want to write to a file you ship with your app?

Copy it out of your application bundle into the documents (or other)

directory to make it writeable.

How do you get the paths to these special sandbox directories?
Use this NSFi | eManager method:

- (NSArray *) URLsForDi rectory: (NSSearchPat hDirectory)dir
| nDomai ns: (NSSear chPat hDomai nMask) domai niask;
[/ domai nMask i s usually NSUser Donai n\Vask

Notice that it returns an NSAr r ay of paths (not a single path).

Since the file system is limited in scope, there is usually only one path in
the array in iOS. No user home directory, no shared system directories
(for the most part), etc. Thus you will almost always just use
| ast Obj ect (for simplicity).

Examples of NSSear chPat hDi r ect ory values: NSDocunent sDi rect ory,
NSCachesDi r ect ory, NSAut osaved! nf ormati onDi r ect ory, etc.

|
|

NSFi | eManager

* Provides utility operations (reading and writing is done via NSDat a).

 Check to see if files exist; create and enumerate directories; move, copy,
delete, replace files.

 Thread safe (as long as a given instance is only ever used in one thread).

« Just alloc/init an instance and start performing operations. If you
don't use the del egat e you can use the def aul t Manager :

NSFi | eManager *manager = [NSFi | eManager def aul t Manager] ;

- (BOOL)createDirectoryAtPath: (NSString *)path
wi thlnternedi ateD rectories: (BOCOL)createl nternedi at es
attributes: (NSDi ctionary*)attri butes

error: (NSError **)error;

- (BOOL) 1 sReadabl eFi | eAt Pat h: (NSString *) pat h;

- (NSArray *)contentsO D rectoryAtPath: (NSString *)path
error: (NSError**)error;

« Has a delegate with lots of “should” methods (to do an operation or
proceed after an error). Check out the documentation.

]

Ir

rrm

‘-III |"\1l'

|
|

File System 1:

NSSt ri ng E -’-ﬁ
« Path construction methods and reading/writing strings to files: |

- (NSString *)stringByAppendi ngPat hConponent :) i
(NSString *)conponent;

- (NSString *)stringByDel eti ngLast Pat hConponent ; _ &
- (BOOL)writeToFile: (NSString *)path =
atomcal ly: (BOOL) fl ag |
encodi ng: (NSSt ri ngEncodi ng) encodi ng <
error: (NSError **)error; SmnE
/'l encoding can be ASCI |, UTF-8, etc. I

- (NSString *)stringWthContentsO File: (NSString *)path | e
usedEncodi ng: (NSSt ri ngEncodi ng *) encodi ng [
error: (NSError **)error;

* And plenty more. Check out the documentation.

SQLite

SQL in a single file
Fast, low memory, reliable.
Open Source, comes bundled in iOS.

Not good for everything (e.g. not video or even serious
sounds/images).

Not a server-based technology (not great at concurrency, but usually
not a big deal on a phone).

Used in countless applications across many platforms, SQLite is
considered a standard for lightweight embedded SQL database
programming.

|

- ;
=~

SQLite

SQLite API

Get a database from a file:

i nt sqlite3 open(const char *filenane, sqglite3 **db);

Execute SQL statements:

Int sqlite3 exec(sqglite3 *db, // an opened dat abase
const char *sql, // the SQL to be executed
Int (*callback)(void *, int, char **, char **),
voi d *cont ext,
char **error);

The callback function gets called for each returned row:

I nt nyCal | back(void *context, int count,
char **val ues, char **col s);

Close the database:

Int sglite3 _close(sqglite3d *db);

|

= ;
=~

Blocks

What is a block?
Blocks represent typically small, self-contained pieces of code.
A block of code is a sequence of statements inside {} .

Usually included in-line with the calling of method that is going to use
the block of code.

Very smart about local variables, referenced objects, etc. The block is

able to make use of variables from the same scope in which it was
defined.

Using blocks in your iOS (and Mac) applications allows you to attach
arbitrary code to Apple-provided methods.

Similar in concept to delegation, but passing short in-line blocks of
code to methods is often more convenient and elegant.

Although blocks are available to pure C and C++, a block is also
always an Obijective-C object.

]

Ir

rrrrrrm
P

i |
‘-III ’\"ﬁl'

Blocks

What does it look like?

You use the caret * operator to declare a block variable and to
indicate the beginning of a block literal. Then it has (optional)
arguments in () . The body of the block itself is contained within { }
(and ; indicates the end of the statement).

Here is an example of calling a method that takes a block as an
argument:

[di ct enuner at eKeysAndObj ect sUsi ngBl ock:

A1 d key, 1d value, BOOL *stop)

NSLog(@Drinking %@is %@", val ue, key);
i f ([@too nuch" isEqual ToString: key])

\ *stop = YES;
Hs

This NSLog() s every key and val ue in di ct (but stops if the key is
@too nuch").

]

-
P

L
3 }
- -III Sig -

T

L

¥
-1

fi

Ll |

Blocks

NSString *maxQuantity = @four";

[di ct enuner at eKeysAndObj ect sUsi ngBl ock:
AN(id key, 1d value, BOOL *stop)

e (Can use local variables declared before the block inside the block: i—: 1A
. |
NSLog(@Drinking Y%@is %", value, key); {18}

1 f ([@too nmuch" isEqual ToString: key]

|| [val ue hasPrefix: maxQuantity])

*stop = YES;

N

}
HIG

o |

Blocks

i i

« But they are read only!

NSString *maxQuantity = @four";

o =5]
i |' | r .
N i —

[di ct enuner at eKeysAndObj ect sUsi ngBl ock:

AN(id key, 1d value, BOOL *stop)
{

/1 This is | LLEGAL:

St : |
n —

' -

M, f]

W B
-
1

=

maxQuantity = @Doesn't matter, get drunk!";

=
(L

NSLog(@ Drinking %@is %@", val ue, key); I
1T ([@too nuch" isEqual ToString: key]

TV

|| [val ue hasPrefix: maxQuantity])

*stop = YES; fos -
}
Hl;

Blocks]

* Unless you mark the local variable as __ bl ock: : v
__block NSString *maxQuantity = @four"; E)

[di ct enuner at eKeysAnd(Obj ect sUsi ngBl ock: ; -
A1 d key, 1d value, BOOL *stop) LT

[l This is ok now =t
maxQuantity = @Doesn't matter, get drunk!"; [

NSLog(@Drinking %@is %@", value, key);
I f ([@too nuch" isEqual ToString: key]
|| [val ue hasPrefix: maxQuantity])

*stop = YES;

}
'

 Orif the “variable” is an instance variable.

But we only access instance variables (e.g. _di spl ay) in setters and
getters. So this is of minimal value to us.

Blocks

So what about objects which are messaged inside the block?
__block NSString *maxQuantity = @four";

[di ct enuner at eKeysAnd(Obj ect sUsi ngBl ock:
AN(id key, 1d value, BOOL *stop)

/[l This is ok now
maxQuantity = @Doesn't matter, get drunk!";

NSLog(@Drinking @is %@", val ue, key);
1T ([@too nuch" isEqual ToString: key]
|| [maxQuantity hasPrefi x:val ue])

\ *stop = YES;
iR

maxQuant i ty will essentially have a st rong pointer to it until the
block goes out of scope or the block itself leaves the heap (i.e. no
one points st r ongly to the block anymore).

Blocks

Imagine we added the following method to Cal cul at or Br ai n:

- (voi d)addUnaryQperation: (NSString *)operation
whi chExecut esBl ock: . . . ;

This method adds another operation to the brain (like sqrt) which you
get to specify the code for.

For now, we’ll not worry about the syntax for passing the block (but
the mechanism for that is the same as for defining
enuner at eKeysAndObj ect sUsi ngBl ock:).

That block we pass in will not be executed until much later. It will be
executed only when that “operation” is pressed in some Ul
somewhere.

Blocks

Example call of addUnar yOQper at i on: whi chExecut esBl ock: .
NSNunber *secret = [NSNunber nunber Wt hDoubl e: 7. 0] ;

[brai n addUnaryOperation: @l uckyMul tiply”
whi chExecut esBl ock: ~(doubl e operand) {
return operand * [secret doubl eVal ue];

H

Imagine if secr et were not automatically kept in the heap here.

What would happen later when this block executed (when the
@ | uckyMul ti pl y” operation was pressed)?

Bad things! Luckily, secr et is automatically kept in the heap until
block can’t be run anymore. This means blocks capture their
surrounding state.

Blocks are also called closures because they close around variables
that are in scope at the time the block is declared.

]

Ir

rrrrrrm
P

i |
‘-III ’\"ﬁl'

|
|

Blocks L

Creating a type for a variable that can hold a block

Blocks are kind of like “objects” with an unusual syntax for declaring
variables that hold them.

Usually if we are going to store a block in a variable, we t ypedef a

type for that variable: '_‘.-.é.,%_. t
t ypedef double (~unary operation_t)(double op); [
Returns a doubl e. The doubl e argument is named op. —:"l k|

This declares a type called unary_oper ati on_t for variables which Ffi. .
can store a block. Specifically, a block which takes a doubl e as its
only argument and returns a doubl e.

|

Y I 1
|

Blocks

Creating a type for a variable that can hold a block il

=Y]
.'\.'. — o e
~r
;a1

Then we could declare a variable of this type and give it a value:

unary_operation_t square;

ﬂl !
| 1
.
===
A
]
. -

= ;
=~

square = “(doubl e operand) {

i

/[l the value of the square variable is a bl ock

return operand * operand,;

|
}; |

And then use the variable squar e like this:

L

doubl e squareO Fi ve = square(5.0);
/[l squareO Five has the value 25.0 after this

You don’t have to t ypedef , for example, the following is also a legal
way to create squar e:

doubl e (~square) (doubl e op) = ~(double op) {

return op * op;
}

|
|

Blocks L

We could then use the unary _oper ati on_t to define a method E o |

= ;
=~

 For example, addUnar yOper at i on: whi chExecut esBl ock: .

: i~ 11
 We would have to add this property to our Cal cul at or Br ai n: o

@roperty (nonatom c, strong) =t
NSMut abl eDi cti onary *unaryQper ati ons; :

 Then implement the method like this:

t ypedef double (~unary_ operation_t)(double op);

- (voi d)addUnaryOperation: (NSString *)op 7
whi chExecut esBl ock: (unary_operation_t)opBl ock

[sel f.unaryQOperations set (bj ect: opBl ock

f or Key: op] ;
}

 Note that the block can be treated somewhat like an object (e.g.,
adding it to a dictionary).

Ll |

|
B = = L]
- —— —
v |
H i

Blocks

« Later in our Cal cul at or Brai n we could use an operation added i |

with the method above like this:

- (doubl e) perfornOperation: (NSString *)operation
{

unary _operation_t unaryQp =]
[sel f. unaryQperati ons obj ect For Key: oper ati on]; e
i f (unaryQp) [imir |
{ sel f. operand = unaryQp(sel f. operand); 1
} E_, isadl

Blocks

We don’t always t ypedef

When a block is an argument to a method and is used immediately,

often there is no t ypedef .

Here is the declaration of the NSDi cti onary enumerating method

we showed earlier:

- (voi d) enuner at eKeysAndhj ect sUsi ngBl ock:
(void (M) (1d key, 1d obj, BOOL *stop))Dbl ock;

No name for the
type appears here.

]

Ir

rrm

o,

This is the local variable name for the

argument inside the method implementation.

The syntax is exactly the same as the t ypedef except that the type

name is not there.

For reference, at ypedef for this argument would look like this:

t ypedef

voi d (“enuneratingBl ock) (id key, id obj, BOOL *stop);

Blocks

Some shorthand allowed when defining a block

“Defining” means you are writing the code between the {}.

1. You do not have to declare the return type if it can be inferred from

your code in the block. If the return type is inferred and multiple
return statements are present, they must exactly match (using
casting if necessary).

2. If there are no arguments to the block, you do not need to have any

parentheses.

Recall this code:

NSNunber *secret = [NSNunmber nunber Wt hDoubl e: 7. 0] ;
[brai n addUnaryOperation: @| uckyMil tiply”

H

whi chExecut esBl ock: "(doubl e operand) {
return operand * [sesyék\doublevalue];

No return type. Inferred
from the r et ur n inside.

|
|

Blocks =

Some shorthand allowed when defining a block E o |

“Defining” means you are writing the code between the {}.

1. You do not have to declare the return type if it can be inferred from
your code in the block. If the return type is inferred and multiple
return statements are present, they must exactly match (using
casting if necessary).

2. If there are no arguments to the block, you do not need to have any ||
parentheses.
Another example: 1 e
[U Vi ew ani mat eW t hDur ati on: 5.0 ani mati ons: ® { =
Vi ew. opacity = 0.5;

s

No arguments to this block. There
isnoneedtosay () {...}.

Memory Cycles (a bad thing)

What if you had the following property in a class?
@roperty (nonatom c, strong) NSArray *nyBl ocks;

And then tried to do the following in one of that class’s methods?

[sel f. myBl ocks addObj ect: () {
[sel f doSonet hi ng] ;
IS

We said that all objects referenced inside a block will stay in the heap
as long as the block does. In other words, blocks keep a strong
pointer to all objects referenced inside of them.

In this case, sel f is an object reference in this block. Thus the block
will have a st r ong pointer to sel f.

But notice that sel f also has a strong pointer to the block (through its
ny Bl ocks property)!

This is a serious problem. Neither sel f nor the block can ever
escape the heap now.

That’s because there will always be a st r ong pointer to both of them
(each other’s pointer). This is called a memory “cycle”.

]

Ir

rrm

i

Memory Cycles Solution

You'll recall that local variables are always st r ong.

That's okay because when they go out of scope, they disappear, so
the st r ong pointer goes away.

But there’s a way to declare that a local variable is weak:
__weak MyC ass *weakSel f = self;

[sel f. myBl ocks addQbj ect: () {
[weakSel f doSonet hi ng] ;
H

This solves the problem because now the block only has a weak
pointer to sel f .

Note that sel f still has a st r ong pointer to the block, but that's okay.

As long as someone in the universe has a strong pointer to this
sel f, the block’s pointer is good. And since the block will not exist
if sel f does not exist (since nyBl ocks won't exist), all is well!

L

Recap b

oh -

A block is an anonymous inline collection of code that: i_ . |
Has a typed argument list just like a function.

Has an inferred or declared return type.

Can capture state from the lexical scope within which it is defined. 1|78

Can optionally modify the state of the scope. |,

Can share the potential for modification with other blocks defined [|
within the same lexical scope.

|
|

Blocks L

When do we use blocks in iOS? E -ﬁ &
Enumeration f
View Animations (this is really nice and easy) Ef_\ =
Sorting (sort this thing using a block as the comparison method) — 1
Notification (when something happens, execute this block) —5
Error handlers (if an error happens while doing this, execute this J

block) NI
Complekt)ion handlers (when you are done doing this, execute this N[

oC 13

And a super-important use: Multithreading

Using the Grand Central Dispatch (GCD) API. This is also a C API by
the way.

Grand Central Dispatch

The basic idea is that you have queues of operations
The operations are specified using blocks.

Most queues run their operations serially (a true “queue”). We're only
going to talk about serial queues.

The system runs operations from queues in separate threads
Though there is no guarantee about how/when this will happen.

All you know is that your queue’s operations will get run (in order) at
some point. The good thing about this is that if your operation
blocks, only that queue will block.

Other queues (like the main queue, where Ul is happening) will
continue to run.

So how can we use this to our advantage?

Get blocking activity (e.g. network) out of our user-interface (main)
thread. Do time-consuming activity concurrently in another thread.

|

- i
e
I

S i

Grand Central Dispatch

Important functions in this C API

Creating and releasing serial queues:

di spat ch_queue_t di spatch _queue_create(const char *I| abel,

NULL) ;

voi d di spatch_rel ease(di spatch_queue_t);

Putting blocks in the queue:
t ypedef void (~dispatch _block t)(void);

voi d di spatch_async(di spatch_gqueue_t queue,
di spatch_bl ock t bl ock);

Getting the current or main queue:
di spatch_queue t dispatch _get current queue();

voi d di spatch_queue_retai n(di spat ch_queue_t);
/] keep it in the heap until dispatch_ rel ease

di spatch_queue_t dispatch _get nmai n_queue();

|

- g
e
I

i
Grand Central Dispatch)
.
What does it look like to call these? _—_‘L
 Example: fetching an image from the network (this would be slow). mm 5
- (voi d)vi ewW | | Appear : (BOOL) ani mat ed 111]
{ |
NSDat a *data = [NSDat a dat aWt hCont ent sOF URL: i mageURL] ; N
U | mage *image = [Ul I mage |1 nageWt hDat a: dat a] ; e
sel f.imageVi ew. i rage = i mage; ;
self.scroll View contentSize = i nage. si ze; S ——
} ul
MU

Grand Central Dispatch

What does it look like to call these?

Example: fetching an image from the network (this would be slow).
(void)viewN | | Appear: (BOCL) ani nat ed

NSDat a *data = [NSData dataWt hCont ent sOf URL: i nageURL] ;
U | mage *image = [U I nage 1 nageWt hDat a: dat a] ;

sel f.inmageVi ew. i rage = i mage;

self.scrollView contentSi ze = | nage. si ze;

LS

Grand Central Dispatch

.|

TIII
1

What does it look like to call these? ﬁ
 Example: fetching an image from the network (this would be slow). T
- (voi d)vi ewW | | Appear : (BOOL) ani mat ed
{ =
di spatch_queue_t downl oadQueue = N
di spat ch_queue_create(“i mage downl oader”, NULL); B |
NSDat a *data = [NSData dat aWt hCont ent sOf URL: i mageURL]; & ("
U | mage *image = [U I nage 1 nageWt hDat a: dat a] ; L/
sel f.inmageVi ew. i rage = i mage; 3
=1
sel f.scroll View. content Si ze = i nage. si ze;) ks

Grand Central Dispatch

What does it look like to call these?

Example: fetching an image from the network (this would be slow).

(voi

d) viewW | | Appear: (BOOL) ani nat ed

di spatch_queue_t downl oadQueue =

di spat ch_queue_create(“i nrage downl oader”, NULL);

di spat ch_async(downl oadQueue, ~{

T

NSDat a *data = [NSData dataWt hContentsOf URL: i mrageURL] ;

U Il mage *image = [U I mage i mageW t hDat a: dat a] ;
sel f.inmageVi ew. i rage = i mage;
self.scrollView contentSi ze = | nage. si ze;

Ll |

}

Grand Central Dispatch

What does it look like to call these?

Example: fetching an image from the network (this would be slow).

(voi d)vi ewW | | Appear: (BOOL) ani nat ed
di spatch_queue_t downl oadQueue =
di spat ch_queue_create(“i nage downl oader”, NULL);
di spat ch_async(downl oadQueue, *{
NSDat a *data = [NSData dataWt hCont ent sOf URL: i nageURL] ;
U | mage *image = [U I nage 1 nageWt hDat a: dat a] ;
sel f.inmageVi ew. i rage = i mage;
self.scrollView contentSi ze = | nage. si ze;

T

Problem: UIKit calls can only happen in the main thread!

Ll |

Grand Central Dispatch

What does it look like to call these?

Example: fetching an image from the network (this would be slow).

(voi d)vi ewW | | Appear: (BOOL) ani nat ed
di spatch_queue_t downl oadQueue =
di spat ch_queue_create(“i nrage downl oader”, NULL);
di spat ch_async(downl oadQueue, *{
NSDat a *data = [NSData dataWt hContentsOf URL: i mrageURL] ;

U | mage *image = [Ul I mage |1 nageWt hDat a: dat a] ;
sel f.inmageVi ew. i nrage = i mage;
self.scrollView contentSi ze = i nage. si ze;

T

Ll |

Grand Central Dispatch

What does it look like to call these?

Example: fetching an image from the network (this would be slow).

(voi d)vi ewW | | Appear: (BOOL) ani nat ed
di spatch_queue_t downl oadQueue =
di spat ch_queue_create(“i mage downl oader”,
di spat ch_async(downl oadQueue, *{
NSDat a *dat a
di spatch_async(di spatch_get nmai n_queue(), *{
U | nage *i mage [U | mage | nrageW t hDat a: dat a] ;
sel f.imageVi ew. i nage | mage;
self.scroll View contentSize
1);
Ve

| mage. si ze;

[NSDat a dat aW t hCont ent sOF URL: i mageURL] ;

Ll |

NULL) :

|

Grand Central Dispatch It imig

What does it look like to call these? g— A

 Example: fetching an image from the network (this would be slow).
- (void)vi ewW | | Appear: (BOOL) ani nat ed
{

di spat ch_queue_t downl oadQueue = IN

- ;
=~

di spat ch_queue_create(“i mage downl oader”, NULL); & /|
di spat ch_async(downl oadQueue, *{]

NSDat a *data = [NSData dat aWt hCont ent sOf URL: i nageURL] ; " i

di spatch_async(di spatch_get nmai n_queue(), *{ LY
U | mage *image = [Ul I mage |1 nageWt hDat a: dat a] ; -
sel f.imgeVi ew. i mage = i nage; v
self.scroll View content Si ze = i mage. si ze; Pst—
) :
Ve

}

 Problem: This “leaks” the downl oadQueue in the heap. We have to§
di spatch_rel ease it.

|

1

Grand Central Dispatch

What does it look like to call these? = T

 Example: fetching an image from the network (this would be slow).
- (void)vi ewW | | Appear: (BOOL) ani nat ed
{

= ;
=~

-

di spat ch_queue_t downl oadQueue = IN
di spat ch_queue_create(“i mage downl oader”, NULL); B ||
di spat ch_async(downl oadQueue, *{ éhl
NSDat a *data = [NSDat a dataW t hCont ent sOF URL: i mageURL] ; £~
di spatch_async(di spatch_get nmai n_queue(), *{
U | mage *image = [Ul I mage |1 nageWt hDat a: dat a] ; .
sel f.i mageVi ew. i mage = i nmage; 1 |
self.scrollView contentSi ze = i nage. si ze;
s
Ve

di spat ch_r el ease(downl oadQueue) ;

}

« Don’t worry, it won’t remove the queue from the heap until all blocks have
been processed.

Next Time

Core Data and Categories:

e Core Data and Documents
« NSNotificati onCenter

* Objective-C Categories

;

Ly

-
2z

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

