

Lecture 9:
Persistence and Blocks

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● Property Lists

● Archiving Objects

● Filesystem Storing

● SQLite

● Blocks

● Grand Central Dispatch

Property Lists

Persistence

● How to make things stick around between launchings of your app
(besides NSUserDefaults)

Property Lists

● A Property List is any graph of objects containing only the following
classes: NSArray, NSDictionary, NSNumber, NSString,
NSDate, NSData.

● Use writeToURL:atomically: and initWithContentsOfURL:
in NSArray or NSDictionary.

● Or NSUserDefaults if appropriate.

● Also NSPropertyListSerialization converts Property Lists
to/from NSData.

Archiving

There is a mechanism for making any object graph persistent

● Not just graphs with NSArray or NSDictionary (or other
Foundation classes) in them.

● For example, the view hierarchies you build in Interface Builder.

Those are obviously graphs of very complicated objects.

● Requires all objects in the graph to implement NSCoding protocol:

- (void)encodeWithCoder:(NSCoder *)coder;

- initWithCoder:(NSCoder *)coder;

● It is extremely unlikely you will use this in this course. Certainly not
during the labs.

● There are other, simpler, (or more appropriate), persistence
mechanisms that we are about to discuss.

Archiving

● Object graph is saved by sending all objects encodeWithCoder:.

- (void)encodeWithCoder:(NSCoder *)coder
{
 [super encodeWithCoder:coder];
 [coder encodeFloat:scale forKey:@”scale”];
 [coder encodeCGPoint:origin forKey:@”origin”];
 [coder encodeObject:expression forKey:@”expression”];
}

Absolutely, must call super’s version or your superclass’s data won’t get
written out!

● Object graph is read back in with alloc/initWithCoder:.

- initWithCoder:(NSCoder *)coder
{
 self = [super initWithCoder:coder];
 scale = [coder decodeFloatForKey:@”scale”];
 expression = [coder decodeObjectForKey:@”expression”];
 origin = [coder decodeCGPointForKey:@”origin”];
 // notice that the order does not matter
}

Archiving

NSKeyed{Un}Archiver classes are used to store/retrieve graph

● Storage and retrieval is done to NSData objects.

● NSKeyedArchiver stores an object graph to an NSData:

+ (NSData *)archivedDataWithRootObject:
 (id <NSCoder>)rootObject;

● NSKeyedUnarchiver retrieves an object graph from an NSData:

+ (id <NSCoder>)unarchiveObjectWithData:(NSData *)data;

What do you think this code does?

id <NSCoder> object = ...;
NSData *data =
 [NSKeyedArchiver archivedDataWithRootObject:object];
id <NSCoder> dup =
 [NSKeyedArchiver unarchiveObjectWithData:data];

● It makes a “deep copy” of object. But beware, you may get more or less
than you expect. Object graphs like “view hierarchies” can be very
complicated.

App Sandbox

● Your application can see the iOS file system like a normal Unix file
system.

● It starts with the root directory: /.

● There are file protections, of course, like normal Unix, so you can’t
see everything.

You can only write inside your “Sandbox”. Why?

● Security - so no one else can damage your application.

● Privacy - so no other applications can view your application’s data.

● Cleanup - when you delete an application, everything its ever written
goes with it.

App Sandbox

The App “Sandbox”

● As part of the sandboxing process, the system installs your app in its
own sandbox directory. It acts as the home for the app and its data.

What’s in this “Sandbox”

● Application bundle directory (binary, .storyboards, .PNGs, etc.). This
directory is not writeable.

● Documents directory. This is where you store permanent data created
by the user.

● Caches directory. Store temporary files here (this is not backed up by
iTunes).

● Other directories (check out NSSearchPathDirectory in the
documentation).

App Sandbox

File System

What if you want to write to a file you ship with your app?

● Copy it out of your application bundle into the documents (or other)
directory to make it writeable.

How do you get the paths to these special sandbox directories?

● Use this NSFileManager method:

- (NSArray *)URLsForDirectory:(NSSearchPathDirectory)dir
 inDomains:(NSSearchPathDomainMask)domainMask;
// domainMask is usually NSUserDomainMask

● Notice that it returns an NSArray of paths (not a single path).

Since the file system is limited in scope, there is usually only one path in
the array in iOS. No user home directory, no shared system directories
(for the most part), etc. Thus you will almost always just use
lastObject (for simplicity).

● Examples of NSSearchPathDirectory values: NSDocumentsDirectory,
NSCachesDirectory, NSAutosavedInformationDirectory, etc.

NSFileManager

● Provides utility operations (reading and writing is done via NSData).

● Check to see if files exist; create and enumerate directories; move, copy,
delete, replace files.

● Thread safe (as long as a given instance is only ever used in one thread).

● Just alloc/init an instance and start performing operations. If you
don't use the delegate you can use the defaultManager:

NSFileManager *manager = [NSFileManager defaultManager];

- (BOOL)createDirectoryAtPath:(NSString *)path
 withIntermediateDirectories:(BOOL)createIntermediates
 attributes:(NSDictionary*)attributes
 error:(NSError **)error;

- (BOOL)isReadableFileAtPath:(NSString *)path;

- (NSArray *)contentsOfDirectoryAtPath:(NSString *)path
 error:(NSError**)error;

● Has a delegate with lots of “should” methods (to do an operation or
proceed after an error). Check out the documentation.

File System

NSString

● Path construction methods and reading/writing strings to files:

- (NSString *)stringByAppendingPathComponent:
 (NSString *)component;

- (NSString *)stringByDeletingLastPathComponent;

- (BOOL)writeToFile:(NSString *)path
 atomically:(BOOL)flag
 encoding:(NSStringEncoding)encoding
 error:(NSError **)error;

// encoding can be ASCII, UTF-8, etc.

- (NSString *)stringWithContentsOfFile:(NSString *)path
 usedEncoding:(NSStringEncoding *)encoding
 error:(NSError **)error;

● And plenty more. Check out the documentation.

SQLite

SQL in a single file

● Fast, low memory, reliable.

● Open Source, comes bundled in iOS.

● Not good for everything (e.g. not video or even serious
sounds/images).

● Not a server-based technology (not great at concurrency, but usually
not a big deal on a phone).

● Used in countless applications across many platforms, SQLite is
considered a standard for lightweight embedded SQL database
programming.

SQLite

SQLite API

● Get a database from a file:

int sqlite3_open(const char *filename, sqlite3 **db);

● Execute SQL statements:

int sqlite3_exec(sqlite3 *db, // an opened database
 const char *sql, // the SQL to be executed
 int (*callback)(void *, int, char **, char **),
 void *context,
 char **error);

● The callback function gets called for each returned row:

int myCallback(void *context, int count,
 char **values, char **cols);

● Close the database:

int sqlite3_close(sqlite3 *db);

Blocks

What is a block?

● Blocks represent typically small, self-contained pieces of code.

● A block of code is a sequence of statements inside {}.

● Usually included in-line with the calling of method that is going to use
the block of code.

● Very smart about local variables, referenced objects, etc. The block is
able to make use of variables from the same scope in which it was
defined.

● Using blocks in your iOS (and Mac) applications allows you to attach
arbitrary code to Apple-provided methods.

● Similar in concept to delegation, but passing short in-line blocks of
code to methods is often more convenient and elegant.

● Although blocks are available to pure C and C++, a block is also
always an Objective-C object.

Blocks

What does it look like?

● You use the caret ^ operator to declare a block variable and to
indicate the beginning of a block literal. Then it has (optional)
arguments in (). The body of the block itself is contained within {}
(and ; indicates the end of the statement).

● Here is an example of calling a method that takes a block as an
argument:

[dict enumerateKeysAndObjectsUsingBlock:
 ^(id key, id value, BOOL *stop)
 {
 NSLog(@"Drinking %@ is %@.", value, key);
 if ([@"too much" isEqualToString:key])
 {
 *stop = YES;
 }
 }];

● This NSLog()s every key and value in dict (but stops if the key is
@"too much").

Blocks

● Can use local variables declared before the block inside the block:

NSString *maxQuantity = @"four";

[dict enumerateKeysAndObjectsUsingBlock:
 ^(id key, id value, BOOL *stop)
 {
 NSLog(@"Drinking %@ is %@.", value, key);
 if ([@"too much" isEqualToString:key]
 || [value hasPrefix:maxQuantity])
 {
 *stop = YES;
 }
 }];

Blocks

● But they are read only!

NSString *maxQuantity = @"four";

[dict enumerateKeysAndObjectsUsingBlock:
 ^(id key, id value, BOOL *stop)
 {
 // This is ILLEGAL:
 maxQuantity = @"Doesn't matter, get drunk!";

 NSLog(@"Drinking %@ is %@.", value, key);
 if ([@"too much" isEqualToString:key]
 || [value hasPrefix:maxQuantity])
 {
 *stop = YES;
 }
 }];

Blocks

● Unless you mark the local variable as __block:

__block NSString *maxQuantity = @"four";

[dict enumerateKeysAndObjectsUsingBlock:
 ^(id key, id value, BOOL *stop)
 {
 // This is ok now:
 maxQuantity = @"Doesn't matter, get drunk!";

 NSLog(@"Drinking %@ is %@.", value, key);
 if ([@"too much" isEqualToString:key]
 || [value hasPrefix:maxQuantity])
 {
 *stop = YES;
 }
 }];

● Or if the “variable” is an instance variable.

But we only access instance variables (e.g. _display) in setters and
getters. So this is of minimal value to us.

Blocks

● So what about objects which are messaged inside the block?

__block NSString *maxQuantity = @"four";

[dict enumerateKeysAndObjectsUsingBlock:
 ^(id key, id value, BOOL *stop)
 {
 // This is ok now:
 maxQuantity = @"Doesn't matter, get drunk!";

 NSLog(@"Drinking %@ is %@.", value, key);
 if ([@"too much" isEqualToString:key]
 || [maxQuantity hasPrefix:value])
 {
 *stop = YES;
 }
 }];

● maxQuantity will essentially have a strong pointer to it until the
block goes out of scope or the block itself leaves the heap (i.e. no
one points strongly to the block anymore).

Blocks

● Imagine we added the following method to CalculatorBrain:

- (void)addUnaryOperation:(NSString *)operation
 whichExecutesBlock:...;

● This method adds another operation to the brain (like sqrt) which you
get to specify the code for.

For now, we’ll not worry about the syntax for passing the block (but
the mechanism for that is the same as for defining
enumerateKeysAndObjectsUsingBlock:).

● That block we pass in will not be executed until much later. It will be
executed only when that “operation” is pressed in some UI
somewhere.

Blocks

● Example call of addUnaryOperation:whichExecutesBlock:.

NSNumber *secret = [NSNumber numberWithDouble:7.0];

[brain addUnaryOperation:@”luckyMultiply”

 whichExecutesBlock: ^(double operand) {

 return operand * [secret doubleValue];

}];
● Imagine if secret were not automatically kept in the heap here.

● What would happen later when this block executed (when the
@”luckyMultiply” operation was pressed)?

Bad things! Luckily, secret is automatically kept in the heap until
block can’t be run anymore. This means blocks capture their
surrounding state.

● Blocks are also called closures because they close around variables
that are in scope at the time the block is declared.

Blocks

Creating a type for a variable that can hold a block

● Blocks are kind of like “objects” with an unusual syntax for declaring
variables that hold them.

● Usually if we are going to store a block in a variable, we typedef a
type for that variable:

typedef double (^unary_operation_t)(double op);

● This declares a type called unary_operation_t for variables which
can store a block. Specifically, a block which takes a double as its
only argument and returns a double.

Returns a double. The double argument is named op.

Blocks

Creating a type for a variable that can hold a block

● Then we could declare a variable of this type and give it a value:

unary_operation_t square;

square = ^(double operand) {
 // the value of the square variable is a block
 return operand * operand;
};

● And then use the variable square like this:

double squareOfFive = square(5.0);
// squareOfFive has the value 25.0 after this

● You don’t have to typedef, for example, the following is also a legal
way to create square:

double (^square)(double op) = ^(double op) {
 return op * op;
};

Blocks

We could then use the unary_operation_t to define a method

● For example, addUnaryOperation:whichExecutesBlock:.

● We would have to add this property to our CalculatorBrain:

@property (nonatomic, strong)
 NSMutableDictionary *unaryOperations;

● Then implement the method like this:

typedef double (^unary_operation_t)(double op);

- (void)addUnaryOperation:(NSString *)op
 whichExecutesBlock:(unary_operation_t)opBlock
{
 [self.unaryOperations setObject:opBlock
 forKey:op];
}

● Note that the block can be treated somewhat like an object (e.g.,
adding it to a dictionary).

Blocks

● Later in our CalculatorBrain we could use an operation added
with the method above like this:

- (double)performOperation:(NSString *)operation
{
 unary_operation_t unaryOp =
 [self.unaryOperations objectForKey:operation];

 if (unaryOp)
 {
 self.operand = unaryOp(self.operand);
 }

 ...
}

Blocks

We don’t always typedef

● When a block is an argument to a method and is used immediately,
often there is no typedef.

● Here is the declaration of the NSDictionary enumerating method
we showed earlier:

- (void)enumerateKeysAndObjectsUsingBlock:
 (void (^)(id key, id obj, BOOL *stop))block;

● The syntax is exactly the same as the typedef except that the type
name is not there.

● For reference, a typedef for this argument would look like this:

typedef
 void (^enumeratingBlock)(id key, id obj, BOOL *stop);

No name for the
type appears here.

This is the local variable name for the
argument inside the method implementation.

Blocks

Some shorthand allowed when defining a block

● “Defining” means you are writing the code between the {}.

● 1. You do not have to declare the return type if it can be inferred from
your code in the block. If the return type is inferred and multiple
return statements are present, they must exactly match (using
casting if necessary).

● 2. If there are no arguments to the block, you do not need to have any
parentheses.

● Recall this code:

NSNumber *secret = [NSNumber numberWithDouble:7.0];

[brain addUnaryOperation:@“luckyMultiply”
 whichExecutesBlock: ^(double operand) {

 return operand * [secret doubleValue];

}];
No return type. Inferred
from the return inside.

Blocks

Some shorthand allowed when defining a block

● “Defining” means you are writing the code between the {}.

● 1. You do not have to declare the return type if it can be inferred from
your code in the block. If the return type is inferred and multiple
return statements are present, they must exactly match (using
casting if necessary).

● 2. If there are no arguments to the block, you do not need to have any
parentheses.

● Another example:

[UIView animateWithDuration:5.0 animations:^ {

 view.opacity = 0.5;

}];
No arguments to this block. There

is no need to say ^() {...}.

Memory Cycles (a bad thing)

● What if you had the following property in a class?
@property (nonatomic, strong) NSArray *myBlocks;

● And then tried to do the following in one of that class’s methods?
[self.myBlocks addObject:^() {
 [self doSomething];
}];

● We said that all objects referenced inside a block will stay in the heap
as long as the block does. In other words, blocks keep a strong
pointer to all objects referenced inside of them.

● In this case, self is an object reference in this block. Thus the block
will have a strong pointer to self.

● But notice that self also has a strong pointer to the block (through its
myBlocks property)!

● This is a serious problem. Neither self nor the block can ever
escape the heap now.

● That’s because there will always be a strong pointer to both of them
(each other’s pointer). This is called a memory “cycle”.

Memory Cycles Solution

● You’ll recall that local variables are always strong.

● That’s okay because when they go out of scope, they disappear, so
the strong pointer goes away.

● But there’s a way to declare that a local variable is weak:

__weak MyClass *weakSelf = self;

[self.myBlocks addObject:^() {
 [weakSelf doSomething];
}];

● This solves the problem because now the block only has a weak
pointer to self.

● Note that self still has a strong pointer to the block, but that’s okay.

● As long as someone in the universe has a strong pointer to this
self, the block’s pointer is good. And since the block will not exist
if self does not exist (since myBlocks won’t exist), all is well!

Recap

A block is an anonymous inline collection of code that:

● Has a typed argument list just like a function.

● Has an inferred or declared return type.

● Can capture state from the lexical scope within which it is defined.

● Can optionally modify the state of the scope.

● Can share the potential for modification with other blocks defined
within the same lexical scope.

Blocks

When do we use blocks in iOS?

● Enumeration

● View Animations (this is really nice and easy)

● Sorting (sort this thing using a block as the comparison method)

● Notification (when something happens, execute this block)

● Error handlers (if an error happens while doing this, execute this
block)

● Completion handlers (when you are done doing this, execute this
block)

● And a super-important use: Multithreading

Using the Grand Central Dispatch (GCD) API. This is also a C API by
the way.

Grand Central Dispatch

The basic idea is that you have queues of operations

● The operations are specified using blocks.

● Most queues run their operations serially (a true “queue”). We’re only
going to talk about serial queues.

The system runs operations from queues in separate threads

● Though there is no guarantee about how/when this will happen.

● All you know is that your queue’s operations will get run (in order) at
some point. The good thing about this is that if your operation
blocks, only that queue will block.

● Other queues (like the main queue, where UI is happening) will
continue to run.

So how can we use this to our advantage?

● Get blocking activity (e.g. network) out of our user-interface (main)
thread. Do time-consuming activity concurrently in another thread.

Grand Central Dispatch

Important functions in this C API

● Creating and releasing serial queues:

dispatch_queue_t dispatch_queue_create(const char *label,
 NULL);

void dispatch_release(dispatch_queue_t);

● Putting blocks in the queue:

typedef void (^dispatch_block_t)(void);

void dispatch_async(dispatch_queue_t queue,
 dispatch_block_t block);

● Getting the current or main queue:

dispatch_queue_t dispatch_get_current_queue();

void dispatch_queue_retain(dispatch_queue_t);
// keep it in the heap until dispatch_release

dispatch_queue_t dispatch_get_main_queue();

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{
 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{

 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{
 dispatch_queue_t downloadQueue =
 dispatch_queue_create(“image downloader”, NULL);

 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{
 dispatch_queue_t downloadQueue =
 dispatch_queue_create(“image downloader”, NULL);

 dispatch_async(downloadQueue, ^{

 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

 });

}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{
 dispatch_queue_t downloadQueue =
 dispatch_queue_create(“image downloader”, NULL);

 dispatch_async(downloadQueue, ^{

 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

 });

}

● Problem: UIKit calls can only happen in the main thread!

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{
 dispatch_queue_t downloadQueue =
 dispatch_queue_create(“image downloader”, NULL);

 dispatch_async(downloadQueue, ^{

 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

 });

}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{
 dispatch_queue_t downloadQueue =
 dispatch_queue_create(“image downloader”, NULL);

 dispatch_async(downloadQueue, ^{

 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 dispatch_async(dispatch_get_main_queue(), ^{

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

 });

 });

}

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{
 dispatch_queue_t downloadQueue =
 dispatch_queue_create(“image downloader”, NULL);

 dispatch_async(downloadQueue, ^{

 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 dispatch_async(dispatch_get_main_queue(), ^{

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

 });

 });

}

● Problem: This “leaks” the downloadQueue in the heap. We have to
dispatch_release it.

Grand Central Dispatch

What does it look like to call these?

● Example: fetching an image from the network (this would be slow).

- (void)viewWillAppear:(BOOL)animated
{
 dispatch_queue_t downloadQueue =
 dispatch_queue_create(“image downloader”, NULL);

 dispatch_async(downloadQueue, ^{

 NSData *data = [NSData dataWithContentsOfURL:imageURL];

 dispatch_async(dispatch_get_main_queue(), ^{

 UIImage *image = [UIImage imageWithData:data];

 self.imageView.image = image;

 self.scrollView.contentSize = image.size;

 });

 });

 dispatch_release(downloadQueue);
}

● Don’t worry, it won’t remove the queue from the heap until all blocks have
been processed.

Next Time

Core Data and Categories:

● Core Data and Documents

● NSNotificationCenter

● Objective-C Categories

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

