

Lecture 8:
iDevice Capabilities

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● Core Location: GPS + Compass

● Accelerometer

● Map Kit

Core Location

Framework for managing location and heading

● No user-interface.

Basic object is CLLocation

● It has many @propertys: coordinate, altitude, speed,
horizontal/verticalAccuracy, timestamp, course.

● Where (approximately) is this location?

@property (readonly) CLLocationCoordinate2D coordinate;

typedef
{
 CLLocationDegrees latitude; // a double
 CLLocationDegrees longitude; // a double
} CLLocationCoordinate2D;

@property (readonly) CLLocationDistance altitude;
// measured in meters

A negative value means “below sea level”.

Core Location

● How close to that latitude/longitude is the actual location?

@property(readonly) CLLocationAccuracy horizontalAccuracy;

@property(readonly) CLLocationAccuracy verticalAccuracy;

● Both are measured in meters. A negative value means the
coordinate or altitude (respectively) is invalid.

● The accuracy depends on the hardware. You can specify the desired
accuracy of the device location:

kCLLocationAccuracyBestForNavigation
kCLLocationAccuracyBest
kCLLocationAccuracyNearestTenMeters
kCLLocationAccuracyHundredMeters
kCLLocationAccuracyKilometer
kCLLocationAccuracyThreeKilometers

● The phone should be plugged in to power source when the desired
accuracy is kCLLocationAccuracyBestForNavigation.

● The more accuracy you request, the more battery will be used.

Core Location

The iDevice does its best given a specified accuracy request

● GPS (very accurate, lots of power).

● Wi-Fi node database lookup (more accurate, more power).

● Cellular tower triangulation (not very accurate, but low power).

Speed

@property (readonly) CLLocationSpeed speed;

● Measured in meters/second.

● Note that the speed is instantaneous (not average speed).

● Generally it’s useful as “advisory information” when you are in a
vehicle.

● A negative value means “speed is invalid”.

Core Location

Course

@property (readonly) CLLocationDirection course;

● Values are measured in degrees starting at due north and continuing
clockwise around the compass. Thus, North is 0 degrees, East is
90 degrees, and so on.

● Not all devices can deliver this information. A negative value means
“direction is invalid”.

Time Stamp

@property (readonly) NSDate *timestamp;

● Pay attention to these since locations will be delivered on an
inconsistent time basis.

Distance (in meters) between CLLocations

- (CLLocationDistance)distanceFromLocation:
 (CLLocation *)otherLocation;

Core Location

How do you get a CLLocation?

● Always from a CLLocationManager (sent to you via its delegate)
when you are interested in the device location.

● Can also use initializer when you are interested in a different location:

- (id)initWithLatitude:(CLLocationDegrees)latitude
 longitude:(CLLocationDegrees)longitude

Core Location

● The device location can be tested in the iOS Simulator from Xcode.

CLLocationManager

CLLocationManager

● General approach to using it:

1. Check to see if the hardware and the user supports the kind of
location updating you want.

2. Create a CLLocationManager instance and set the delegate to
receive updates.

3. Configure the manager according to what kind of location updating
you want.

4. Start the manager monitoring for location changes.

Kinds of location monitoring

● Accuracy-based continuous updates.

● Updates only when significant changes in location occur.

● Region-based updates.

● Heading monitoring.

CLLocationManager

Checking to see what your hardware can do

● Has the user enabled location monitoring in Settings?

+(BOOL)locationServicesEnabled;

● Can this hardware provide heading info (compass)?

+(BOOL)headingAvailable;

● Can get events for significant location changes (available only in iOS
4 and later and requires a cellular radio)?

+(BOOL)significantLocationChangeMonitoringAvailable;

● Is region monitoring available (only certain iOS 4 devices)?

+(BOOL)regionMonitoringAvailable;

● Is the application authorized to use Location Services in Settings?

+(CLAuthorizationStatus)authorizationStatus;

CLLocationManager

Authorization

● When your application first tries to use location monitoring, user will
be asked if it’s okay to do so.

● If the user denies you, the appropriate method above will return NO
and the authorizationStatus class method will return
kCLAuthorizationStatusDenied.

Getting the information from the CLLocationManager

● You can just ask the CLLocationManager for the location or
heading, but usually we don’t.

● Instead, we let it update us when the location changes (enough) via
its delegate.

CLLocationManager

Accuracy-based continuous location monitoring

● Always set the desired accuracy as low as possible:

@property CLLocationAccuracy desiredAccuracy;

● Only changes in location of at least this distance (in meters) will fire a
location update to you:

@property CLLocationDistance distanceFilter;

Use the value kCLDistanceFilterNone to be notified of all
movements. This is also the default value.

Starting and stopping the monitoring

- (void)startUpdatingLocation;

- (void)stopUpdatingLocation;

● Be sure to turn updating off when your application is not going to
consume the changes!

CLLocationManagerDelegate

Get notified via the CLLocationManager’s delegate

● The CLLocationManagerDelegate methods that give location
updates are:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation;

- (void)locationManager:(CLLocationManager *)manager
 didUpdateLocations:(NSArray *)locations;

● Because it can take several seconds to return an initial location, the
location manager typically delivers the previously cached location
data immediately.

● It delivers more up-to-date location data as it becomes available.

● Therefore it is always a good idea to check the timestamp of any
location object before taking any actions.

Heading

Heading monitoring

● Only changes in heading of at least this many degrees will fire a
location update to you:

@property CLLocationDegrees headingFilter;

● Heading of “zero degrees” is the heading of the “top” of the device.

● With the next property, you can change that “top” (for example,
CLDeviceOrientationLandscapeLeft):

@property CLHeadingOrientation headingOrientation;

Start the monitoring

- (void)startUpdatingHeading;

- (void)stopUpdatingHeading;

● Be sure to turn updating off when your application is not going to
consume the changes!

CLLocationManagerDelegate

Get notified via the CLLocationManager’s delegate

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading;

Error reporting to the delegate

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error;

● Not always a fatal thing, but pay attention to this delegate method.

● The kCLErrorLocationUnknown error is likely temporary, keep
waiting (for a while at least).

● If the user denies your application’s use of the location service, this
method reports a kCLErrorDenied error. Upon receiving such an
error, you should stop the location service.

● If a heading could not be determined because of strong interference
from nearby magnetic fields, this method returns
kCLErrorHeadingFailure. Keep waiting then.

Heading

CLHeading

● There are two types of heading (because the Earth's North Pole is not
exactly the magnetic north):

@property (readonly) CLLocationDirection magneticHeading;

@property (readonly) CLLocationDirection trueHeading;

● Negative values mean “this heading is unreliable” (i.e. don’t use it).

● You won’t get trueHeading if location services are turned off (e.g. by
the user).

@property (readonly) CLLocationDirection headingAccuracy;

● Basically how far off the magnetic heading might be from actual magnetic
north (in degrees).

● A negative value means “this heading is not valid”.

@property (readonly) NSDate *timestamp;

Heading

Heading calibration user-interface

● Automatically put on screen by iOS, but can be prevented by the
CLLocationManager’s delegate:

- (BOOL)locationManagerShouldDisplayHeadingCalibration:
 (CLLocationManager *)manager;

● Or dismissed (maybe after a timer or something) using
CLLocationManager instance method:

- (void)dismissHeadingCalibrationDisplay;

Significant Location Changes

Significant location change monitoring in CLLocationManager

● “Significant” is not strictly defined. Think vehicles, not walking. Likely
uses cell towers.

- (void)startMonitoringSignificantLocationChanges;
- (void)stopMonitoringSignificantLocationChanges;

● Be sure to turn updating off when your application is not going to
consume the changes!

● You get notified via the CLLocationManager’s delegate. Same as
for accuracy-based updating if your application is running.

Significant Location Changes

This service works even if your application is not running

● Or is in the background (we haven’t talked about multitasking yet).

● You will get launched and your application delegate will receive the
message application:didFinishLaunchingWithOptions:
with an options dictionary that will contain this key (it indicates that
the application was launched in response to an incoming location
event):

UIApplicationLaunchOptionsLocationKey

● You should use this as a signal to create and configure a new
CLLocationManager. Get the latest location via:

@property (readonly) CLLocation *location;

● Or start location services again. Upon doing so, your delegate
receives the corresponding location data.

● If you are running in the background, don’t take too long (a few
seconds)!

Region-based Monitoring

Region-based location monitoring in CLLocationManager

- (void)startMonitoringForRegion:(CLRegion *);

- (void)stopMonitoringForRegion:(CLRegion *);

Get notified via the CLLocationManager’s delegate

- (void)locationManager:(CLLocationManager *)manager
 didEnterRegion:(CLRegion *)region;

- (void)locationManager:(CLLocationManager *)manager
 didExitRegion:(CLRegion *)region;

- (void)locationManager:(CLLocationManager *)manager
monitoringDidFailForRegion:(CLRegion *)region
 withError:(NSError *)error;

Region-based Monitoring

Works even if your application is not running!

● In exactly the same way as “significant location change” monitoring.

● The regions in this property are shared by all instances of the
CLLocationManager class in your application:

@property (readonly) NSSet *monitoredRegions;

● The set of monitored regions persists across application
termination/launch.

● You cannot add regions to this property directly.

● Instead, you must register regions by calling:

startMonitoringForRegion:

Region-based Monitoring

CLRegion

● CLRegions are tracked by name (identifier) because they survive
application termination/relaunch.

● How to create one:

-(id)initCircularRegionWithCenter:(CLLocationCoordinate2D)center

 radius:(CLLocationDistance)radius

 identifier:(NSString *)identifier;

Regions (currently) require large location changes to fire

● Probably based on same technology as “significant location change”
monitoring.

● Likely both of these “fire” when a new cell tower is detected.

● Definitely they would not use GPS (that would be very expensive power-
wise).

Region-based Monitoring

Region monitoring size limit

● This property defines the largest boundary distance allowed from a
region’s center point:

@property (readonly) CLLocationDistance
 maximumRegionMonitoringDistance;

● Attempting to monitor a region larger than this (radius in meters) will
generate a kCLErrorRegionMonitoringFailure error (which
will be sent via the delegate method mentioned on previous slide).

● If this property returns a negative value, then region monitoring is not
working.

Accelerometer

CMMotionManager

● The CMMotionManager class is the
gateway to the motion services provided
by iOS. These services provide an app
with accelerometer data, rotation-rate
data, magnetometer data, and other
device-motion data.

● As a device moves, its hardware reports
linear acceleration changes along the
primary x, y, z axes in three-dimensional
space.

● The device accelerometer reports values
for each axis in units of g-force.

● You can use this data to detect both the
current orientation of the device (relative
to the ground) and any instantaneous
changes to that orientation.

Accelerometer

How to get accelerometer data

● You create a CMMotionManager object:

motionManager = [[CMMotionManager alloc] init];

● Specify the interval at which you want to receive events:

@property(assign, nonatomic) NSTimeInterval
 accelerometerUpdateInterval;

This property is measured in seconds. You may also change this
property while the manager gives updates.

● To start/stop accelerometer updates use the following methods:

- (void)startAccelerometerUpdates;
- (void)stopAccelerometerUpdates;

● This time, there is NO delegate. To get data from the accelerometer
use the following property:

 @property(readonly) CMAccelerometerData *accelerometerData;

file:///Users/raduionescu/Library/Developer/Shared/Documentation/DocSets/com.apple.adc.documentation.AppleiOS6.0.iOSLibrary.docset/Contents/Resources/Documents/documentation/CoreMotion/Reference/CMAccelerometerData_Class/Reference/Reference.html#//apple_ref/doc/c_ref/CMAccelerometerData

● The following code will also handle accelerometer updates. This is
more elegant, but it requires advanced Objective-C knowledge
(more on blocks later):

NSOperationQueue *queue = [[NSOperationQueue alloc] init];

[self.motionManager
 startAccelerometerUpdatesToQueue:queue
 withHandler:
^(CMAccelerometerData *accelerometerData, NSError *error)
{
 self.rollX = accelerometerData.acceleration.x *
 kFilterFactor + self.rollX * (1.0 - kFilterFactor);

 self.rollY = accelerometerData.acceleration.y *
 kFilterFactor + self.rollY * (1.0 – kFilterFactor);
}];

● kFilterFactor is a constant between 0 and 1 defined in your code
somewhere:

#define kFilterFactor 0.08//or a value near 0.1 is good

● And rollX, rollY are properties of the self object:

@property (nonatomic) UIAccelerationValue rollX;

Accelerometer

Map Kit

MKMapView displays a map

Map Kit

MKMapView displays a map

The map can have annotations on it

● Each annotation is simply a coordinate,
a title and a subtitle. They are
displayed using an MKAnnotationView
(MKPinAnnotationView shown here).

Map Kit

MKMapView displays a map

The map can have annotations on it

● Each annotation is simply a coordinate,
a title and a subtitle. They are
displayed using an MKAnnotationView
(MKPinAnnotationView shown here).

Annotations can have a callout

● It appears when the annotation view is
tapped. By default just shows the title
and subtitle. But you can add left and
right accessory views.

● In this example, left is a UIImageView,
right is a detail disclosure UIButton
(UIButtonTypeDetailDisclosure).

MKMapView

● Create with alloc/init or drag from Object Library in Interface
Builder.

● Displays an array of objects which implement MKAnnotation:

@property (readonly) NSArray *annotations;

This NSArray contains id<MKAnnotation> objects.

● MKAnnotation protocol:

@protocol MKAnnotation <NSObject>

@property(readonly) CLLocationCoordinate2D coordinate;

@optional
@property (readonly) NSString *title;
@property (readonly) NSString *subtitle;

@end

typedef
{
 CLLocationDegrees latitude;
 CLLocationDegrees longitude;
} CLLocationCoordinate2D;

MKAnnotation

Note that the annotations property is readonly

@property (readonly) NSArray *annotations;

● Must add/remove annotations explicitly:

- (void)addAnnotation:(id <MKAnnotation>)annotation;

- (void)addAnnotations:(NSArray *)annotations;

- (void)removeAnnotation:(id <MKAnnotation>)annotation;

- (void)removeAnnotations:(NSArray *)annotations;

Generally a good idea to add all your annotations up-front

● Allows the MKMapView to be efficient about how it displays them.

● Annotations are light-weight, but annotation views are not.

● MKMapView reuses annotation views similar to how UITableView
reuses cells. Usually, we end up using only a few annotation views.

MKAnnotation

What do annotations look like on the map?

● By default they look like a pin.

● Annotations are drawn using an MKAnnotationView subclass.

● The default one is MKPinAnnotationView (which is why they look
like pins).

● You can create your own or set properties on existing
MKAnnotationViews to modify the look.

MKAnnotation

What do annotations look like on the map?

● By default they look like a pin.

● Annotations are drawn using an MKAnnotationView subclass.

● The default one is MKPinAnnotationView (which is why they look
like pins).

● You can create your own or set properties on existing
MKAnnotationViews to modify the look.

What happens when you touch on an annotation (e.g. the pin)?

● Depends on the MKAnnotationView that is associated with the
annotation (more on this later).

● By default, nothing happens, but if canShowCallout is YES in the
MKAnnotationView, then a little box will appear showing the
annotation’s title and subtitle. And this little box (the callout)
can be enhanced with left/rightCalloutAccessoryViews.

MKAnnotation

● The following delegate method is also called when you touch on an
annotation:

- (void)mapView:(MKMapView *)sender
didSelectAnnotationView:(MKAnnotationView *)aView;

● This is a great place to set up the MKAnnotationView's callout
accessory views lazily.

● For example, you might want to wait until this method is called to
download an image to show.

MKAnnotationView

How are MKAnnotationViews created and associated with annotations?

● Very similar to UITableViewCells in a UITableView. Implement the
following MKMapViewDelegate method (if not implemented, returns a
pin view):

- (MKAnnotationView *)mapView:(MKMapView *)sender
 viewForAnnotation:(id <MKAnnotation>)annotation
{
 MKAnnotationView *pinView =
 [sender dequeueReusableAnnotationViewWithIdentifier:@”A”];

 if (!pinView)
 {
 pinView = [[MKPinAnnotationView alloc]
 initWithAnnotation:annotation reuseIdentifier:@”A”];

 pinView.canShowCallout = YES;
 // build pinView’s callout accessory views here
 }
 pinView.annotation = annotation; // this can happen twice

/* Maybe load up accessory views here (if not too expensive)?
 * Or reset them and wait until
 * mapView:didSelectAnnotationView: to load actual data. */

 return pinView;
}

MKAnnotationView

Interesting properties (all nonatomic, strong if a pointer)

● The annotation should be treated as if it is readonly:

@property id <MKAnnotation> annotation;

● The pin itself can be replaced with another image:

@property UIImage *image;

● Left and right callout accessory views:

@property UIView *leftCalloutAccessoryView;
// maybe a UIImageView

@property UIView *rightCalloutAccessoryView;
// maybe a detail disclosure UIButton

● Set this to NO to ignore touch events (no delegate method, no callout):

@property BOOL enabled;

MKAnnotationView

Interesting properties (all nonatomic, strong if a pointer)

● Where the image (pin) should be relative to the coordinate point of
the associated annotation:

@property CGPoint centerOffset;

● Where the callout view should be relative to the top-center point of the
annotation view:

@property CGPoint calloutOffset;

When this property is set to (0, 0), the anchor point of the callout
bubble is placed on the top-center point of the annotation view’s
frame.

● Users can drag annotations. Only works if the associated
annotation implements setCoordinate: and this property is
set to YES:

@property BOOL draggable;

MKAnnotationView

● If you set one of the callout accessory views to a UIControl, for
example:

pinView.rightCalloutAccessoryView =
[UIButton buttonWithType:UIButtonTypeDetailDisclosure];

● Then the following MKMapViewDelegate method will get called
when the accessory view is touched:

- (void)mapView:(MKMapView *)sender
 annotationView:(MKAnnotationView *)aView
calloutAccessoryControlTapped:(UIControl *)control;

MKAnnotationView

Using didSelectAnnotationView: to load up callout accessories

● Example: Using a downloaded thumbnail image for
leftCalloutAccessoryView.

● Create a UIImageView. Assign it to leftCalloutAccessoryView
in mapView:viewForAnnotation:.

● Reset the UIImageView’s image to nil there as well.

● Then load the image on demand like this:

- (void)mapView:(MKMapView *)sender
 didSelectAnnotationView:(MKAnnotationView *)aView
{
 if ([aView.leftCalloutAccessoryView isKindOfClass:
 [UIImageView class]])
 {
 UIImageView *imageView =
 (UIImageView *)aView.leftCalloutAccessoryView;

 imageView.image = ...;
 }
}

MKMapView

● Configuring the map view’s display type:

@property MKMapType mapType;

MKMapTypeStandard, MKMapTypeSatellite, MKMapTypeHybrid;

MKMapView

● Showing the user’s current location:

@property BOOL showsUserLocation;

@property (readonly) BOOL isUserLocationVisible;

@property (readonly) MKUserLocation *userLocation;

MKUserLocation is an object which conforms to MKAnnotation
which holds the user’s location.

● Restricting the user’s interaction with the map:

@property BOOL zoomEnabled;

@property BOOL scrollEnabled;

MKMapView

● Controlling the region the map is displaying:

@property MKCoordinateRegion region;

typedef struct
{
 CLLocationCoordinate2D center;
 MKCoordinateSpan span;
} MKCoordinateRegion;

typedef struct
{
 CLLocationDegrees latitudeDelta;
 CLLocationDegrees longitudeDelta;
} MKCoordinateSpan;

- (void)setRegion:(MKCoordinateRegion)region
 animated:(BOOL)animated;

● Can also set the center point only:

@property CLLocationCoordinate2D centerCoordinate;

-(void)setCenterCoordinate:(CLLocationCoordinate2D)center
 animated:(BOOL)animated;

MKMapView

Map loading notifications

● Remember that the maps are downloaded from the Internet.

● These methods are called whenever a new group of map tiles need to
be downloaded from the server (whenever you expose portions of
the map by panning or zooming the content):

- (void)mapViewWillStartLoadingMap:(MKMapView *)sender;

- (void)mapViewDidFinishLoadingMap:(MKMapView *)sender;

- (void)mapViewDidFailLoadingMap:(MKMapView *)sender
 withError:(NSError *)error;

Lots of C functions to convert points, regions, rects, etc.

● Take a look over the documentation.

● Examples:

MKMapRectContainsPoint, MKMapPointForCoordinate, etc.

Overlays

Overlays

● Mechanism is similar to annotations (uses MKOverlayView instead
of MKAnnotationView).

- (void)addOverlay:(id <MKOverlay>)overlay;
- (void)addOverlays:(NSArray *)overlays;
- (void)removeOverlay:(id<MKOverlay>)overlay;
- (void)removeOverlays:(NSArray *)overlays;

MKOverlay protocol

● Protocol which includes MKAnnotation plus these:

@property (readonly) MKMapRect boundingMapRect;

- (BOOL)intersectsMapRect:(MKMapRect)mapRect;
// optional method, uses boundingMapRect otherwise

● Overlays are associated with MKOverlayViews via delegate (just like
annotations are associated with MKAnnotationViews):

- (MKOverlayView *)mapView:(MKMapView *)sender
 viewForOverlay:(id <MKOverlay>)overlay;

MKOverlayView

● MKOverlayView subclasses must be able to draw the overlay:

- (void)drawMapRect:(MKMapRect)mapRect
 zoomScale:(MKZoomScale)zoomScale
 inContext:(CGContextRef)context;

● This is not quite like drawRect: (because you’ll notice that you are
provided the context).

● But you will still use CoreGraphics to draw (this method must be
thread-safe, by the way).

● Also notice that the rectangle to draw is in map coordinates, not view
coordinates.

● Converting to/from map points/rects from/to view coordinates:

- (MKMapPoint)mapPointForPoint:(CGPoint)point;

- (MKMapRect)mapRectForRect:(CGRect)rect;

- (CGPoint)pointForMapPoint:(MKMapPoint)mapPoint;

- (CGRect)rectForMapRect:(MKMapRect)mapRect;

Next Time

Persistence:

● Property Lists

● Archiving Objects

● Filesystem Storing

● SQLite

● Blocks

● Grand Central Dispatch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

