

Lecture 2:
MVC Design Concept

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● MVC Design Concept

● Introduction to Objective-C

● Objective-C Example

MVC Design Model

Controller

Model View

MVC Design Model

● Divide objects in your program into 3 camps.

Controller

Model View

MVC Design Model

● Model = What your application is (but not how it is
displayed)

Controller

Model View

MVC Design Model

● Controller = How your Model is presented to the user
(UI logic)

Controller

Model View

MVC Design Model

● View = How your application is displayed.

Controller

Model View

MVC Design Model

● It's all about managing communication between camps.

Controller

Model View

MVC Design Model

● Controllers can always talk directly to their Model.

Controller

Model View

MVC Design Model

● Controllers can always talk directly to their View.

Controller

Model View

outlet

MVC Design Model

● The Model and View should never speak to each other.

Controller

Model View

outlet

MVC Design Model

● Can the View speak to its Controller?

Controller

Model View

outlet

?

MVC Design Model

● Sort of. Communication is blind and structured.

Controller

Model View

outlet

MVC Design Model

● The Controller can drop a target on itself.

Controller

Model View

outlet

targettarget

MVC Design Model

● Then hand out an action to the View.

Controller

Model View

outlet

targettarget

action

MVC Design Model

● The View sends the action when things happen in the
UI.

Controller

Model View

outlet

targettarget

action

MVC Design Model

● Sometimes the View needs to synchronize with the
Controller.

Controller

Model View

outlet

targettarget

action

will

should did

MVC Design Model

● The Controller sets itself as the View's delegate.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

MVC Design Model

● The delegate is set via a protocol (it's blind to the View
class).

Controller

Model View

outlet

targettarget

action
delegate

will

should did

MVC Design Model

● Views do not own the data they display.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

MVC Design Model

● If needed, they have a protocol to acquire the data.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

MVC Design Model

● Controllers are almost always that data source (not the
Model).

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

MVC Design Model

● Controllers interpret/format Model information for the
View.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

MVC Design Model

● Can the Model talk directly to the Controller?

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

?

MVC Design Model

● No. The Model is (should be) UI independent.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

MVC Design Model

● But what if the Model has information to update or
something?

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

MVC Design Model

● It uses a “radio station” - broadcast mechanism.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

Notification
& KVO

MVC Design Model

● Controllers (or other Models) “tune in” to interesting
stuff.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

Notification
& KVO

MVC Design Model

● Now combine MVC groups to make complicated
programs.

Controller

Model View

outlet

targettarget

action
delegate

will

should did

data

count at

data source

Notification
& KVO

Introduction to Objective-C

● The Objective-C language is a simple computer
language designed to enable sophisticated object
oriented programming.

● Objective-C extends the standard ANSI C language by
providing syntax for defining classes, and methods,
as well as other constructs that promote dynamic
extension of classes.

● If you are familiar with C and have programmed with
object-oriented languages before, you can learn the
basic syntax of Objective-C from the following slides.

Introduction to Objective-C

● Many of the traditional object-oriented concepts, such
as encapsulation, inheritance, and polymorphism, are
all present in Objective-C.

● There are a few important differences that are going to
be discussed later.

Introduction to Objective-C

We will talk about:

● Code Organization

● Classes

● Weak Typing vs Strong Typing

● Methods and Messaging

● Properties

● Public and Private Methods

Code Organization

● As with C code, you define header files and source files
to separate public declarations from the
implementation details of your code.

● Objective-C files use the file extensions listed here:

Extension Source type

.h Header files. Header files contain class, type, function,
and constant declarations.

.m Source files. This is the typical extension used for source
files and can contain both Objective-C and C code.

.mm Source files. A source file with this extension can contain
C++ code in addition to Objective-C and C code. This
extension should be used only if you actually refer to C++
classes or features from your Objective-C code.

Code Organization

● When you want to include header files in your source
code, you typically use a #import directive.

● This is like #include, except that it makes sure that
the same file is never included more than once.

● The Objective-C samples and documentation all prefer
the use of #import, and your own code should too.

Classes in Objective-C

● Classes in Objective-C provide the basic construct for
encapsulating some data with the actions that
operate on that data.

● An object is a runtime instance of a class, and contains
its own in-memory copy of the instance variables
declared by that class and pointers to the methods of
the class.

● The specification of a class in Objective-C requires two
distinct pieces: the interface and the implementation.

● The interface (usually in a .h file) contains the class
declaration and defines the instance variables and
methods associated with the class.

● The implementation (usually in a .m file) contains the
actual code for the methods of the class.

Classes in Objective-C

● Here is an example where MyClass inherits from
Cocoa’s base class. The class declaration begins
with the @interface compiler directive.

Weak Typing vs Strong Typing

● Objective-C supports both strong and weak typing for
variables containing objects.

● Strongly typed variables include the class name in the
variable type declaration.

● Weakly typed variables use the type id for the object
instead. Weakly typed variables are used frequently
for things such as collection classes, where the exact
type of the objects in a collection may be unknown.

● Weakly typed variables provide tremendous flexibility
and allow for much greater dynamism in Objective-C
programs.

Weak Typing vs Strong Typing

● The following example shows strongly and weakly typed
variable declarations:

MyClass *myObject1; // Strong typing

id myObject2; // Weak typing

● In Objective-C, object references are pointers. The id
type implies a pointer.

Methods and Messaging

● A class in Objective-C can declare two types of
methods: instance methods and class methods.

● The declaration of a method consists of the method type
identifier, a return type, one or more signature
keywords, and the parameter type and name
information:

Method signature keywords
Method

type identifier

Return type Parameter types
Parameter names

Methods and Messaging

● The declaration preceded by a minus (-) sign indicates
that this is an instance method.

● The method’s actual name is a concatenation of all of
the signature keywords, including colon characters:

insertObject:atIndex:

● When you want to call a method, you do so by
messaging an object.

● A message is the method signature, along with the
parameter information the method needs.

● All messages you send to an object are dispatched
dynamically, thus facilitating the polymorphic behavior
of Objective-C classes.

Methods and Messaging

● To send the insertObject:atIndex: message to
an object in the myArray variable, you would use the
following syntax:

[myArray insertObject:anObject atIndex:0];

● Objective-C lets you nest messages. Thus, if you had
another object called myAppObject that had
methods for accessing the array object and the object
to insert into the array, you could rewrite the
preceding example as:

[[myAppObject theArray]

 insertObject:[myAppObject someObject]

 atIndex:0];

Dot Syntax

● Objective-C also provides a dot syntax for invoking
accessor methods. Accessor methods get and set
the state of an object, and typically take the form:

-(type)propertyName

-(void)setPropertyName:(type)

● Using dot syntax, you could rewrite the previous
example as:

[myAppObject.theArray

 insertObject:myAppObject.someObject

 atIndex:0];

● You can also use dot syntax for assignment:

myAppObject.theArray = aNewArray;

Methods and Messaging

● Now we can add the MyClass implementation:

Objective-C ExamplePlane.h

#import “Vehicle.h”

@interface Plane : Vehicle

@end

#import “Vehicle.h”

@interface Plane : Vehicle

@end

SuperclassClass name

Superclass header file.
This is often <UIKit/UIKit.h>

Objective-C ExamplePlane.h

#import “Vehicle.h”

@interface Plane : Vehicle

// declaration of public methods

@end

#import “Vehicle.h”

@interface Plane : Vehicle

// declaration of public methods

@end

Objective-C ExamplePlane.m

#import “Plane.h”

@implementation Plane

@end

#import “Plane.h”

@implementation Plane

@end

Import our own header file.

Note, superclass not specified here.

Objective-C ExamplePlane.m

#import “Plane.h”

@implementation Plane
//implementation of public and private methods

@end

#import “Plane.h”

@implementation Plane
//implementation of public and private methods

@end

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@end

No superclass here either.

The () are mandatory.

Objective-C ExamplePlane.h

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

@end

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

@end

The full name of this method is
flyToAirport:atAltitude:

Lining up the
colons makes

things look nice.

We need to import Airport.h for
method declaration below to work.

It doesn't return
any value.

It takes two arguments.
Note how each is preceded

by its own keyword.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here

}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here

}

@end

No semicolon here.

Objective-C ExamplePlane.h

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

@end

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

@end

Now let's add the possibility to set/get the plane's speed.

Objective-C ExamplePlane.h

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

- (void)setCruiseSpeed:(double)aSpeed;
- (double)cruiseSpeed;

@end

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

- (void)setCruiseSpeed:(double)aSpeed;
- (double)cruiseSpeed;

@end

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

How do we implement
these methods?

Objective-C ExamplePlane.h

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

- (void)setCruiseSpeed:(double)aSpeed;
- (double)cruiseSpeed;

@end

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

- (void)setCruiseSpeed:(double)aSpeed;
- (double)cruiseSpeed;

@end

We have to declare something to hold the speed value.

Objective-C ExamplePlane.h

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

@property (nonatomic) double cruiseSpeed;

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

- (void)setCruiseSpeed:(double)aSpeed;
- (double)cruiseSpeed;

@end

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

@property (nonatomic) double cruiseSpeed;

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

- (void)setCruiseSpeed:(double)aSpeed;
- (double)cruiseSpeed;

@end

nonatomic means its setter and
getter are not thread-safe. That’s no
problem if this is UI code because
all UI code happens on the main

thread of the application.

This property
essentially declares

the two “cruiseSpeed”
methods below.

Objective-C ExamplePlane.h

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

@property (nonatomic) double cruiseSpeed;

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

@end

#import “Vehicle.h”
#import “Airport.h”

@interface Plane : Vehicle

// declaration of public methods

@property (nonatomic) double cruiseSpeed;

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km;

@end

We never declare both the @property and its setter
and getter in the header file (just the @property).

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

But how do we implement
the accessors and how do

we store the value?

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

We almost always use @synthesize to create
 the implementation of the setter and getter for
a @property. It both creates the setter and
getter methods AND creates some storage to

hold the value.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

We almost always use @synthesize to create
 the implementation of the setter and getter for
a @property. It both creates the setter and
getter methods AND creates some storage to

hold the value.

This is the name of the
storage location to use.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 ???
}

- (double)cruiseSpeed
{
 ???
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

This is the name of the
storage location to use.

If we don’t use “=” here,
@synthesize uses the

name of the property
(which is not

recommended).

“_” then the name of the
property is a common

naming convention.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 _cruiseSpeed = aSpeed;
}

- (double)cruiseSpeed
{
 return _cruiseSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 _cruiseSpeed = aSpeed;
}

- (double)cruiseSpeed
{
 return _cruiseSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

This is what the methods
created by @synthesize

would look like.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

Most of the time, you can let @synthesize
do all the work of creating setters and getters.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)

@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

However, we can create our own
 if there is any special work to

do when setting or getting.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

Here is another @property.
This one is private

(because it’s in our .m file).

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

It’s a pointer to an object (of class Airport). It’s strong
which means that the memory used by this object will

stay around for as long as we need it.

All objects are always
allocated on the heap.
So we always access

 them through a pointer.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
}

@end

@synthesize does NOT create storage
for the object this pointer points to.

It just allocates room for the pointer.

This creates the setter and getter for our new @property.

We’ll talk about
how to allocate

 and initialize the
objects themselves

later.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here

}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here

}

@end

Now let’s take a look at some example coding.
This is just to get a feel for Objective-C syntax.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == [self nearestAirport])

}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == [self nearestAirport])

}

@end

The “square brackets”
syntax is used to send

messages.

We are calling the nearestAirport's
getter on ourself here.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == [self nearestAirport])
 [[self nearestAirport] landPlane:self
 fromAltitude:km];

}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == [self nearestAirport])
 [[self nearestAirport] landPlane:self
 fromAltitude:km];

}

@end

Square brackets inside square brackets.

Here’s another example of sending a message that has
2 arguments. It is being sent to an instance of Airport.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == [self nearestAirport])
 [self.nearestAirport landPlane:self
 fromAltitude:km];

}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == [self nearestAirport])
 [self.nearestAirport landPlane:self
 fromAltitude:km];

}

@end

This is identical to [self nearestAirport].

Calling getters and setters is such an important
task, it has its own syntax: dot notation.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == self.nearestAirport)
 [self.nearestAirport landPlane:self
 fromAltitude:km];

}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == self.nearestAirport)
 [self.nearestAirport landPlane:self
 fromAltitude:km];

}

@end

We can use dot notation here too.

Objective-C ExamplePlane.m

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == self.nearestAirport)
 [self.nearestAirport landPlane:self
 fromAltitude:km];
 //continue flight to destination
}

@end

#import “Plane.h”

@interface Plane()
//declaration of private methods (as needed)
@property (nonatomic, strong) Airport *nearestAirport;
@end

@implementation Plane
//implementation of public and private methods

@synthesize cruiseSpeed = _cruiseSpeed;
@synthesize nearestAirport = _nearestAirport;

- (void)setCruiseSpeed:(double)aSpeed
{
 if (aSpeed > 0) _cruiseSpeed = aSpeed;
}

- (void)flyToAirport:(Airport *)destination
 atAltitude:(double)km
{
 //put the code to land the plane here
 if (destination == self.nearestAirport)
 [self.nearestAirport landPlane:self
 fromAltitude:km];
 //continue flight to destination
}

@end

Next Time

Objective-C in Depth:

● More on Dot Notation

● Instance Methods and Class Methods

● Object Typing

● Introspection

● Foundation Framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

