

Lecture 10:
Core Data and Categories

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Content

● Core Data and Documents

This is how you store something serious in iOS.

Easy entry point into iCloud.

● NSNotificationCenter

The little “radio station” we talked about in the first
lecture.

● Objective-C Categories

A way to add methods to a class without subclassing.

Core Data

● We are object-oriented programmers and we don’t really like C APIs.
We want to store our data using object-oriented programming.

Welcome to Core Data

● This is an object-oriented database.

● It’s a way of creating an object graph backed by a database (usually
SQL).

How does it work?

● Create a visual mapping (using Xcode tool) between database and
objects. Create and query for objects using object-oriented API.

● Access the “columns in the database table” using @propertys on
those objects.

For creating a visual map of your
application’s database objects go
to “New File ...” then Data Model

under Core Data section.

Core Data

Unless we have multiple databases,
usually we name the Data Model

our application name

Core Data

The Data Model file. Sort of like
a storyboard for databases.

Core Data

Core Data

Relationships

Attributes

Entities

The Data Model consists of:

Click here to add an Entity.

Core Data

Then type the name here. We
will call this first Entity Movie.

An Entity will appear in our code as an
(or a subclass of an) NSManagedObject.

Notice that we have an error. That’s
because our Attribute needs a type.

Core Data

Then edit the name
of the Attribute here.

Now we will add some Attributes.
We will start with title.

Click here to add an Attribute.

Attributes are accessed on our
NSManagedObjects via the methods

valueForKey: and setValueForKey:.
Or, if we subclass NSManagedObject,

we can access Attributes as @propertys.

Core Data

Set the type of the title Attribute to String.
Note that all Attributes are objects:
● Numeric ones are NSNumber.
● Boolean is also NSNumber.
● Binary Data is NSData.
● Date is NSDate.
● String is NSString.
● Don’t worry about Transformable.

Here are a whole bunch
of more Attributes.

Core Data

You can see your Entities and Attributes
in graphical form by clicking here.

Core Data

This is the same thing we were just
looking at, but in a graphical view.

Core Data

A graphical version will appear.

Add another Entity.

And set its name to Genre.

These can be dragged around and
positioned around the center of the graph.

Attributes can be added
in the Graphic Editor too.

Core Data

Here we add an Attribute
called name to Genre.

We can edit the attribute directly by double-clicking
on it or on the (Data Model) Inspector if we prefer.

Let’s set its type
to String as well.

Core Data

Similar to outlets and actions,
we can CTRL-drag to create

Relationships between Entities.

Core Data

Click on the newRelationship in Movie.

Core Data

This Relationship to the Genre is “what kind” of
Movie, so we will call this Relationship whatKind.

Core Data

Now click on the newRelationship in Movie.

Core Data
A Genre can have many Movies,
so we will call this Relationship
movies on the Genre side.

We also need to note that there
can be multiple Movies per Genre.

Core Data

Note the Data Model’s recognition
of the “inverse” of this Relationship.

The type of this Relationship in our
Objective-C code will be NSManagedObject

(or a subclass of NSManagedObject).

The type of this Relationship in our
Objective-C code will be NSSet

(since it is a “to many” Relationship).

Core Data

So how do you access all of this stuff in your code?

● You need an NSManagedObjectContext.

● It is the hub around which all Core Data activity turns.

How do you get one?

● There are two ways:

1. Create a UIManagedDocument and ask for its
managedObjectContext (a @property).

2. Click the “Use Core Data” button when you create an Empty
Application Project. Then your AppDelegate will have a
managedObjectContext @property.

● We are going to focus on doing the first one.

UIManagedDocument

UIManagedDocument

● It inherits from UIDocument which provides a lot of mechanism for
the management of storage.

● If you use UIManagedDocument, you’ll be on the fast-track to iCloud
support.

● Think of a UIManagedDocument as simply a container for your Core
Data database.

● Creating a UIManagedDocument:

UIManagedDocument *document =

 [[UIManagedDocument alloc] initWithFileURL:url];

UIManagedDocument

But you must open/create the document to use it

● Check to see if it exists:

[[NSFileManager defaultManager] fileExistsAtPath:[url path]]

● If it does, open the document using:

- (void)openWithCompletionHandler:
 (void (^)(BOOL success))completionHandler;

● If it does not, create it using:

- (void)saveToURL:(NSURL *)url
 forSaveOperation:(UIDocumentSaveOperation)operation
 completionHandler:(void (^)(BOOL success))completionHandler;

What is that completionHander?

● Just a block of code to execute when the open/save completes.

● That’s needed because the open/save is asynchronous. Do not ignore
this fact!

UIManagedDocument
● Example:

self.document = [[UIManagedDocument alloc]
 initWithFileURL:(NSURL *)url];
if ([[NSFileManager defaultManager]
 fileExistsAtPath:[url path]])
{
 [document openWithCompletionHandler:^(BOOL success) {

 if (success) [self documentIsReady];
 else NSLog(@“Couldn’t open document at %@”, url);
 }];
}
else
{
 [sourceDocument saveToURL:url
 forSaveOperation:UIDocumentSaveForCreating
 completionHandler:^(BOOL success) {

 if (success) [self openDocument];
 else NSLog(@“Couldn’t create document at %@”, url);
 }];
}
/* Can’t do anything with the document yet.
 * Do it in documentIsReady. */

UIManagedDocument

● Once document is open/created, you can start using it. But you might
want to check its documentState when you do:

- (void)documentIsReady
{
 if (self.document.documentState == UIDocumentStateNormal)
 {
 NSManagedObjectContext *context =
 self.document.managedObjectContext;
 // do something with the Core Data context
 }
}

UIManagedDocument

Other documentStates

● UIDocumentStateClosed (not opened or file does not exist yet).

● UIDocumentStateSavingError (success will be NO).

● UIDocumentStateEditingDisabled (temporarily unless failed
to revert to saved).

● UIDocumentStateInConflict (e.g., because some other device
changed it via iCloud).

The documentState is often “observed”

● So it’s about time we talked about using NSNotifications to
observe other objects.

NSNotification

NSNotificationCenter

● Get the default notification center via:

[NSNotificationCenter defaultCenter]

● Then send it the following message if you want to observe another object:

- (void)addObserver:(id)observer
 selector:(SEL)methodToSendIfSomethingHappens
 name:(NSString *)name
 object:(id)sender;

The meaning of the arguments

● observer is the object to get notified;

● name is what you are observing (a constant somewhere);

● sender is the object whose changes you're interested in (nil is
anyone's).

NSNotification

NSNotificationCenter

● You will then be notified when the named event happens:

- (void)methodToSendIfSomethingHappens:
 (NSNotification *)notification
{

 NSString* name = notification.name
 // the name passed above

 id obj = notification.object
 // the object sending you the notification

 NSDictionary *info = notification.userInfo;
 // notification-specific information about what happened

}

NSNotification

Example

NSNotificationCenter *center =
 [NSNotificationCenter defaultCenter];

● Watching for changes in a document's state:

[center addObserver:self
 selector:@selector(documentChanged:)
 name:UIDocumentStateChangedNotification
 object:self.document];

● Don’t forget to remove yourself when you’re done watching:

[center removeObserver:self];

[center removeObserver:self
 name:UIDocumentStateChangedNotification
 object:self.document];

● Failure to remove yourself can sometimes result in crashes.

● This is because the NSNotificationCenter keeps an “unsafe
unretained” pointer to you.

NSNotification

Another Example

● Watching for changes in a CoreData database (made via a given
NSManagedObjectContext):

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 [center addObserver:self
 selector:@selector(contextChanged:)
 name:NSManagedObjectContextObjectsDidChangeNotification
 object:self.document.managedObjectContext];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [center removeObserver:self
 name:NSManagedObjectContextObjectsDidChangeNotification
 object:self.document.managedObjectContext];

 [super viewWillDisappear:animated];
}

● There’s also an NSManagedObjectContextDidSaveNotification.

NSNotification

Receiving the NSManagedObjectContext notifications

● NSManagedObjectContextObjectsDidChangeNotification or
NSManagedObjectContextDidSaveNotification:

- (void)contextChanged:(NSNotification *)notification
{
 NSDictionary *info = notification.userInfo;
}

The info NSDictionary contains the following keys

● NSInsertedObjectsKey gives an array of objects which were
inserted.

● NSUpdatedObjectsKey gives an array of objects whose attributes
changed.

● NSDeletedObjectsKey gives an array of objects which were deleted.

NSNotification

Other things to observe

● Look in the documentation for various classes in iOS.

● They will document any notifications they will send out.

● You can post your own notifications too. We did this in the
NearbyDeals app that we created in our Labs:

[[NSNotificationCenter defaultCenter]
 postNotificationName:@"locationUpdateNotification"
 object:self];

[[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(showMapRegionForNotification:)
 name:@"locationUpdateNotification"
 object:[DealsModel sharedModel]];

● See NSNotificationCenter documentation for more information.

● Don’t abuse this mechanism!

● Don’t use it to essentially get “global variables” in your application.

UIManagedDocument

Saving a document (like creating or opening) is also asynchronous

● Documents are auto-saved, but you can explicitly save as well.

● You use the same method as when creating, but with a different “save
operation”:

[self.doc saveToURL:self.doc.fileURL
 forSaveOperation:UIDocumentSaveForOverwriting
 completionHandler:^(BOOL success) {

 if (!success)
 NSLog(@“Save failed for %@”, self.doc.localizedName);
}];

/* The document is not saved at this point in the
 * code (only once the block above executes). */

● Note the two UIManagedDocument properties used:

@property (nonatomic, strong) NSURL *fileURL;
// specified originally in initWithFileURL:

@property (readonly) NSString *localizedName;

UIManagedDocument

Closing a document is also asynchronous

● The document will be closed if there are no strong pointers left to the
UIManagedDocument.

● But you can close it explicitly as well:

[self.doc closeWithCompletionHandler:^(BOOL success) {

 if (!success)
 NSLog(@“Close failed for %@”, self.doc.localizedName);
}];

/* The document is not closed at this point in the
 * code (only once the block above executes). */

UIManagedDocument

Multiple instances of UIManagedDocument on the same document

● This is perfectly legal, but understand that they will not share an
NSManagedObjectContext.

● Thus, changes in one will not automatically be reflected in the other.

● You’ll have to refetch in other UIManagedDocuments after you
make a change in one.

● Conflicting changes in two different UIManagedDocuments would
have to be resolved by you!

● It’s exceedingly rare to have two “writing” instances of
UIManagedDocument on the same file.

● But a single writer and multiple readers? Not so rare. Just need to
know when to refetch.

Core Data

Inserting objects into the database

● We grabbed an NSManagedObjectContext from an open
UIManagedDocument’s managedObjectContext @property.

● Now we use it to insert/delete objects in the database and query for
objects in the database:

NSManagedObject *movie = [NSEntityDescription
 insertNewObjectForEntityForName:@”Movie”
 inManagedObjectContext:managedObjectContext];

● Note that this NSEntityDescription class method returns an
NSManagedObject instance.

● All objects in the database are represented by NSManagedObjects or
by subclasses of NSManagedObjects.

● An instance of NSManagedObject is a manifestation of an Entity in our
Core Data model (the model that we just graphically built in Xcode).

● All the Attributes of a newly-inserted object will be nil (unless you
specify a default value in Data Model Inspector).

Core Data

How to access Attributes in an NSManagedObject instance

● You can access the Attributes using the following two
NSKeyValueObserving protocol methods:

- (id)valueForKey:(NSString *)key;

- (void)setValue:(id)value forKey:(NSString *)key;

● You can also use valueForKeyPath:/setValue:forKeyPath:
and it will follow your Relationships!

Core Data

How to access Attributes in an NSManagedObject instance

● The key is an Attribute name in your data mapping.

For example, @”posterData”.

● The value is whatever is stored (or to be stored) in the database.

It will be nil if nothing has been stored yet (unless Attribute has a
default value in Xcode).

● Note that all values are objects (numbers and booleans are
NSNumber objects).

● Binary data values are NSData objects.

● Date values are NSDate objects.

● “To-many” mapped relationships are NSSet objects (or
NSOrderedSet if ordered).

● Non-“to-many” relationships are NSManagedObjects.

Core Data

Changes (writes) only happen in memory, until you save

● Yes, UIManagedDocument auto-saves.

● But explicitly saving when a batch of changes is made is good
practice.

Core Data

Calling valueForKey: and setValue:forKey: is pretty messy

● There’s no type-checking.

● And you have a lot of literal strings in your code (e.g.
@”posterData”).

What we really want is to set/get using @propertys

● The solution is to create a subclass of NSManagedObject.

● The subclass will have @propertys for each attribute in the
database.

● We name our subclass the same name as the Entity it matches (not
strictly required, but it is recommended to do so).

● And, as you might imagine, we can get Xcode to generate both the
header file @property entries, and the corresponding
implementation code (which is not @synthesize, so be careful
with this).

Core Data

Select both Entities.
We are going to have Xcode

generate NSManagedObject
subclasses for them for us.

Core Data

Ask Xcode to generate NSManagedObject
subclasses for our Entities.

Core Data

Pick where you want your
new classes to be stored

(default is often one directory
level higher, so watch out).

This will make your @propertys be
scalars (e.g. int instead of NSNumber *)
where possible. Be careful if one of your
Attributes is an NSDate, you will end up
with an NSTimeInterval @property.

Core Data

Here are the two classes that were generated:
Movie.h/Movie.m and Genre.h/Genre.m

Core Data

We have @propertys for all of Genre’s
Attributes and Relationships. That's great!

These convenience methods
are for putting Movie objects in

and out of the movies Attribute.

But you can also just make a
mutableCopy of the movies
@property (creating an

 NSMutableSet) and modify it.
Then put it back by setting
the movies @property.

Core Data

It seems that Xcode did not generate the
proper class here for the whatKind

@property. It should have been a Movie *.

Core Data

Easy fix. Just generate the classes again.
Clearly there is an “order of generation” problem

(Movie was generated before Genre was).

Core Data

Click here to replace the old Movie.h/Movie.m
and Genre.h/Genre.m files with the new ones.

Core Data

Now this is correct. Note that you should
regenerate these NSManagedObject
subclasses any time you change your

schema.

Core Data

What does @dynamic mean? It means “I do not implement the
setter or getter for this property, but send me the message anyway

and I will use the Objective-C runtime to figure out what to do”.
There is a mechanism in the Objective-C runtime to trap a message

sent to you that you don’t implement. NSManagedObject does
this and calls valueForKey: or setValue:forKey:. Pretty cool!

Now let's look at the
Movie implementation file.

Core Data

So how do I access my Attributes with dot notation?

● Here are some examples:

Movie *movie = [NSEntityDescription
 insertNewObjectForEntityForName:@”Movie”
 inManagedObjectContext:context];

NSData *posterData = movie.posterData;
UIImage *posterImage = [UIImage
 imageWithData:posterData];

movie.whatKind = ...;
// a Genre object we created or got by querying

movie.whatKind.name = @”Comedy”;
// multiple dots will follow relationships

Core Data

What if I want to add code to my NSManagedObject subclass?

● That's a problem because you might want to modify your schema and
re-generate the subclasses!

● But it would be really cool to be able to add code (very object-
oriented).

● Especially code to create an object and set it up properly.

● Or maybe to derive new @propertys based on ones in the database
(for example, a UIImage based on a URL in the database).

● Time to introduce an Objective-C feature called Categories.

Categories

Categories are an Objective-C syntax for adding code to a class

● Without subclassing it.

● Without even having to have access to the code of the class (for
example, its .m file).

Examples

● NSString’s drawAtPoint:withFont: method.

This method is added by UIKit (since it’s a UI method) even though
NSString is in Foundation.

● NSIndexPath’s row and section properties (used in
UITableView-related code) are added by UIKit too, even though
NSIndexPath is also in Foundation.

Categories

Syntax

● Example: Adding the AddOn category to Movie.

@interface Movie (AddOn)

- (UIImage *)posterImage;

@property (readonly) BOOL isRecommended;

@end

● Categories have their own .h and .m files. They are usually named like
this: ClassName+PurposeOfExtension.[mh].

● Categories cannot have instance variables, so no @synthesize
allowed in its implementation.

Categories

Implementation

@implementation Movie (AddOn)

- (UIImage*)posterImage // is not in the database
{
 return [UIImage imageWithData:self.posterData];
}

- (BOOL)isRecommended // based on rating and year
{
 NSDateFormatter *df = [[NSDateFormatter alloc] init];
 df.dateFormat = @"yyyy";
 NSString *year = [df stringFromDate:[NSDate date]];

 return [self.rating floatValue] > 7.5
 && [self.year intValue] >= [year intValue] - 1;
}

@end

● Sometimes we add @propertys to an NSManagedObject subclass
via categories to make accessing BOOL attributes (which are
NSNumbers) cleaner. Or we add @propertys to convert NSData
objects to whatever the bits represent.

Categories
Most common category on an NSManagedObject subclass? Creation

@implementation Movie (Create)

+ (Movie *)movieWithData:(NSDictionary *)movieData
 inManagedObjectContext:(NSManagedObjectContext *)context
{

 Movie *movie = ...;
 /* See if a Movie for that data is already in the
 * database. We don't know how to query yet. */

 if (!movie)
 {
 movie = [NSEntityDescription
 insertNewObjectForEntityForName:@”Movie”
 inManagedObjectContext:context];

 /* Initialize the movie from the movieData.
 * Perhaps even create other database objects. */
 }
 return movie;
}

@end

● Any class can have a category added to it, but don’t overuse or abuse
this mechanism.

Core Data

Choose “New File ...” from the File menu,
then pick Objective-C category from the

Cocoa Touch section.

Core Data

Enter the name of the category, as well as the name
of the class the category’s methods will be added to.

Core Data

Xcode will create both the .h and the .m for the category.
Remember, you cannot use @synthesize in this .m file.

Core Data

Finally, add implementation
to the AddOn category.

Deletion

● Deleting objects from the database is easy:

[self.doc.managedObjectContext deleteObject:movie];

● Make sure that the rest of your objects in the database are in a
sensible state after this.

● Relationships will be updated for you (if you set Delete Rule for
relationship attributes properly).

● And don’t keep any strong pointers to movie after you delete it!

● Here is another method we sometimes put in a category of an
NSManagedObject subclass:

@implementation Movie (Deletion)

- (void)prepareForDeletion
{
 self.whatKind.movieCount--;
}

@end We don’t need to set our whatKind to nil or anything here
(that will happen automatically). But if Genre had a “number

of movies” attribute, we might adjust it down by one here.

Core Data

What do you know so far?

● Create objects in the database with:

insertNewObjectForEntityForName:inManagedObjectContext:

● Get or set properties with valueForKey: or setValue:forKey:.
Or using @propertys in a custom subclass.

● Delete objects in the database using the deleteObject: method of
the NSManagedObjectContext.

Core Data

One very important thing left to know how to do: Query

● Basically you need to be able to retrieve objects from the database,
not just create new ones.

● You do this by executing an NSFetchRequest in your
NSManagedObjectContext.

● Four important things involved in creating an NSFetchRequest:

1. Entity to fetch (required).

2. NSPredicate specifying which of those Entities to fetch (optional,
default is all of them).

3. NSSortDescriptors to specify the order in which fetched objects
are returned.

4. How many objects to fetch at a time and/or maximum to fetch
(optional, default is all of them).

Querying

Creating an NSFetchRequest

● We will consider each of these lines of code one by one:

NSFetchRequest *request = [NSFetchRequest
 fetchRequestWithEntityName:@”Movie”];
request.fetchBatchSize = 20;
request.fetchLimit = 100;
request.predicate = ...;
request.sortDescriptors = [NSArray
 arrayWithObject:sortDescriptor];

Specifying the kind of Entity we want to fetch

● A given fetch returns objects all of the same Entity. You can't have a
fetch that returns some Movies and some Genres (one or the
other).

Setting fetch sizes/limits

● If you created a fetch that would match 500 objects, the request above
faults 20 at a time. And it would stop fetching after it had fetched
100 of the 500.

NSSortDescriptor

● When we execute a fetch request, it's going to return an NSArray of
NSManagedObjects.

● NSArrays are ordered, so we have to specify the order when we
fetch.

● We do that by giving the fetch request a list of “sort descriptors” that
describe what to sort by:

NSSortDescriptor *sortDescriptor =
 [NSSortDescriptor sortDescriptorWithKey:@”title”
 ascending:YES
 selector:@selector(caseInsensitiveCompare:)];

● There’s another version with no selector: argument (default is the
method compare:). The selector: argument is just a method
sent to each object to compare it to others.

● Some of these “methods” might happen on the database side.

● We give a list of these to the NSFetchRequest because sometimes
we want to sort first by one key, then sort by another (e.g.
lastName, firstName).

NSPredicate

NSPredicate

● You use predicates to represent logical conditions.

● This is the basis of how we specify exactly which objects we want
from the database.

Predicate formats

● Creating one looks a lot like creating an NSString, but the contents
have semantic meaning.

● Example:

NSString *series = @“Harry Potter”;

NSPredicate *predicate = [NSPredicate
 predicateWithFormat:@“title contains %@”, series];

NSPredicate

Other examples

● Unique movie in the database:

@“uniqueId = %@”, [movieData objectForKey:@”id”]

● Matches title case insensitively:

@“title contains[c] %@”, (NSString *)

● If we had the Date of the release of a Movie in the data mapping:

@“releaseDate > %@”, [NSDate date]

● Movie search by Genre:

@“whatKind.name = %@”, (NSString *)

● Genre search (not a Movie search here):

@“any movies.title contains %@”, (NSString *)

● Many more options. Look at the NSPredicate class documentation.

NSPredicate

Combined predicates

● You can use AND and OR inside a predicate string:

@”(year = %@) OR (title = %@)” // same with ||

@”(year = %@) && (title = %@)” // same with AND

● Or you can use the alternative to combine NSPredicate objects with
special NSCompoundPredicates:

NSArray *array = [NSArray arrayWithObjects:
 predicate1,
 predicate2, nil];

NSPredicate *predicate = [NSCompoundPredicate
 andPredicateWithSubpredicates:array];

● This predicate is “predicate1 AND predicate2”.

● OR predicate also available, of course.

Querying

Putting it all together

● Let's say we want to query for all Genres:

NSFetchRequest *request = [NSFetchRequest
 fetchRequestWithEntityName:@”Genre”];

● That have movies with a rating greater than 8:

request.predicate = [NSPredicate
 predicateWithFormat:@“any movies.rating > %@”, 8];

● Sorted by the Genre's name:

NSSortDescriptor *sortByName =
 [NSSortDescriptor sortDescriptorWithKey:@”name”
 ascending:YES];

request.sortDescriptors =
 [NSArray arrayWithObject:sortByName];

Querying

Executing the fetch

● Use the executeFetchRequest: method:

NSManagedObjectContext *managedObjectContext =
 self.doc.managedObjectContext;

NSError *error;

NSArray *genres =
 [managedObjectContext executeFetchRequest:request
 error:&error];

● Returns nil if there is an error (check the NSError for details).

● Returns an empty array (not nil) if there are no matches in the
database.

● Returns an array of NSManagedObjects (or subclasses thereof) if
there were any matches.

● You can pass NULL for error: if you don't care why it fails.

Querying

Faulting

● The above fetch does not necessarily fetch any actual data.

● It could be an array of “as yet unfaulted” objects, waiting for you to
access their attributes.

● Core Data is very smart about “faulting” the data in as it is actually
accessed.

● For example, if you did something like this:

for (Genre *genre in genres)
{
 NSLog(@“fetched genre %@”, genre);
}

You may or may not see the names of the genres in the output

(you might just see “unfaulted object”, depending on whether it
prefetched them).

Faulting

Faulting

● But if you did this:

for (Genre *genre in genres)
{
 NSLog(@“fetched genre named %@”, genre.name);
}

Then you would definitely fault all the Genres in from the database.

There is so much more (that we don’t have time to talk about)

● Optimistic locking (deleteConflictsForObject:).

● Rolling back unsaved changes.

● Undo and redo changes.

What should you study next?

● Modal View Controllers

● Core Motion (gyro, accelerometer, magnetometer)

Measuring the device’s movement.

● UITextField, UITextView, UIActionSheet

● UIView Animation

● UIImagePickerController

Getting images from the camera or photo library.

● NSTimer

Perform scheduled tasks on the main thread.

● iPad and Universal Applications

There are specific Navigation and View Controllers.

● Open GL ES

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

