

Lecture 1:
Mobile Applications Development

Developing Applications for iOS

Prof. PhD. Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Grading System

● Grade options (either one):

1) 100% individual project

2) 100% final exam (computer test)*

(*) + 0.2p per lab attendance (up to 1p)
● In both cases, grade must be greater

than 5

Content

● Key concepts of mobile applications development

● Limitations of mobile devices

● Features of mobile devices

● General advices

● Overview of the mobile environments

● Requirements

● iOS Overview

● iOS Technology Layers

Introduction

● Mobile applications development is the process of
building software applications for small handheld
devices such as mobile phones, personal digital
assistants, tablets, etc.

Introduction

● Platforms for mobile applications:

Android, iOS, Windows Mobile, etc.

● Mobile applications are pre-installed on phones
during manufacturing, or downloaded by customers
from various mobile software distribution systems:

App Store (iOS)

Google Play Store (Android)

Amazon Appstore (Android)

Microsoft Store (Windows Mobile), etc.

Key concepts

● Smartphones and tablets are becoming the computer
of choice for more and more people.

● Despite the attention paid to mobile development in
the last years, a lot of developers still lack the basics
when it comes to building mobile applications.

● Many developers are just used to the desktop / web.

Key concepts

● Even if it may seem easy to make an application, it is
hard to create a “good user experience”.

● Mobile devices have different limitations and features
compared to the desktop computers.

● The emergence of mobile devices and their smaller
screens means some serious adjustments in
perspective.

Key concepts

● We need to make a transition to a new perspective.

Limitations of mobile devices

● Smaller screen:

● Instead of building for large PC screens (13 to 27
inches wide), developers could be dealing with a 4 to
6 inches wide Android, iPhone or BlackBerry screen.

● Because of the screen size constraint, every pixel
counts to some degree.

● Even the iPad's larger screen (7.3 by 9.5 inches)
needs to be considered differently because the
screen resolution is still less that of most desktop
monitors.

Limitations of mobile devices

● Less memory and bandwidth:

● Mobile devices really do not have a lot of memory.

● Although a typical PC can have 8-16 GB of memory,
a smartphone might have just 512 MB.

(e.g.: developers loading 100 images of 10 MB onto a
phone would quickly run out of memory)

● Network connectivity for smartphones and tablets
incurs limits on downloading.

● Memory, space and battery life are some of the
parameters that have to be taken into account when
you develop all your apps.

Limitations of mobile devices

● Different user interaction:

● Mobile devices have no mouse. The physical
keyboard is much smaller or even missing.

● This means mobile applications don't respond to
double clicks or keyboard shortcuts.

● Most smartphones can interact using touch screens
or capacitive displays. This can also be a feature.

Features of mobile devices

● Better user interaction:

● Most smartphones can interact using touch screens
or capacitive displays.

● Capacitive displays enable the use of multi-touch
gestures which allow a natural interaction with the
device.

(e.g.: pinch-open to zoom in, pinch-close to zoom-out,
swipe to delete, etc.)

Features of mobile devices

● Using multi-touch gestures

https://www.youtube.com/watch?v=TB5nnMZlZUM

https://www.youtube.com/watch?v=flR6mz788h0

https://www.youtube.com/watch?v=TB5nnMZlZUM

Features of mobile devices

● Using built-in devices:

● Most smartphones have built-in devices such as:
camera, accelerometer, gyroscope, GPS, compass,
etc.

● Mobile applications should make use of this
capabilities whenever this is possible.

● E.g.: detecting the device orientation using the
accelerometer (to adjust the display) can be used for
creating a better user experience.

● E.g.: building augmented reality applications requires
the GPS, the compass, the camera and even the
accelerometer.

Features of mobile devices

● Using built-in devices for mobile applications

General Advices

● Focus on user experience: reduce navigation for
users, go with defaults, remember what users did last
time.

● Choose carefully between native and web
development: web-based development is less
expensive and not as complex, but it doesn't deliver
the kind of experience the user might expect.

● Think about how to take advantage of location:
location services enable developers to offer a more
customized experience.

General Advices

● Design and code for touch interfaces: developers
need to understand the user flows first, then translate
the basis of touch interfaces into coding language.

● Expect users to make mistakes: developers should
anticipate users pressing the wrong buttons.

● Smaller size of smartphones and unfamiliar users
guarantee input mistakes. Mobile applications should
be more tolerant and recover without extra effort.

“Simple can be harder than complex: You have to work
hard to get your thinking clean to make it simple. But it’s
worth it in the end because once you get there, you can
move mountains.” - Steve Jobs

Overview of the mobile environments

● Each of the platforms for mobile applications has an
IDE which provides tools to allow a developer to
write, test and deploy applications into the target
platform environment.

● An alternative to native applications are web-based
mobile applications which are less expensive to build.
This alternative represents a trade-off between cost
and user experience, e.g. we will not be able to use
all device capabilities.

Android

● Developers can use the Android Studio IDE to build
applications using the Kotlin or Java programming
languages.

● Android is based on a Linux kernel with libraries and
APIs written in C.

● There are more than over 1 million apps available for
Android, that can be downloaded from online stores
such as Google Play Store.

Windows Phone

● Developers can build applications with Visual Studio
2010 IDE using the C# programming language.

● Windows Mobile is the successor of Windows Phone.
It's a newer mobile operating system compared to
Android and iOS.

● The applications are available in the Microsoft Store.

iOS

● Integrated with Xcode IDE. Developers must have
Intel-based Mac computers and the latest Mac OS X
installed.

● iOS applications can be developed using an open-
source programming language, called Swift. This is a
modern OOP language designed to be more concise
than Objective-C.

● iOS is based on a UNIX kernel with libraries written in
C, Objective-C and Swift.

Requirements

● Must have an Intel-based Mac with MacOS 10.11.5 or
later and Xcode 11.3.1.

● Hardware:

iPhone 4 or later, iPod Touch 4th Generation or later,
iPad 2 or later

● Textbook:

Apple online documentation

https://developer.apple.com/develop/

● Prerequisites:

Object-Oriented Programming Principles

Requirements

Object-Oriented Terms:

● Class (description/template for an object)

● Instance (manifestation of a class)

● Method (code invoked on an object)

● Instance Variable (object-specific storage)

● Inheritance (code-sharing mechanism)

● Superclass/Subclass (Inheritance relationships)

● Protocol (non-class-specific method declaration)

What will I learn in this course?

● How to build cool iOS apps:

Easy to build even for very complex applications.

Join a vibrant development community.

● Real-life Object-Oriented Programming:

The heart of Cocoa Touch is 100% object-oriented.

Application of MVC design model.

● Many computer science concepts applied in a
commercial development platform: Databases,
Graphics, Multimedia, Multithreading, Animation,
Networking and much more.

● We want you to be able to go on and sell products on
the AppStore.

iOS Overview

● iOS comprises the operating system and
technologies that you use to run applications
natively on devices, such as iPad, iPhone, and iPod
Touch.

● Although it shares a common heritage and many
underlying technologies with Mac OS X, iOS was
designed to meet the needs of a mobile
environment, where users’ needs are slightly
different.

● Some technologies are available only on iOS, such
as the Multi-Touch interface and accelerometer
support.

iOS SDK Overview

● The iOS SDK contains the code, information, and
tools you need to develop, test, run, debug, and tune
applications for iOS.

● Xcode provides the launching point for testing your
applications on an iOS device, and in iOS Simulator.

● iOS Simulator is a platform that mimics the basic iOS
environment but runs on your local Macintosh
computer.

Platform Components

● Tools

● Language

label.textColor = UIColor.blueColor()

● Frameworks

● Design Strategies

MVC

Map Kit UI Kit

Foundation
Core Data

Core Motion

iOS SDK Overview

● Xcode and iOS Simulator:

iOS Technology Layers

● The kernel in iOS is based on a variant of the same
basic Mach kernel that is found in Mac OS X.

● On top of this UNIX kernel are the layers of services
that are used to implement applications on the
platform.

● This layering gives you choices when it comes to
implementing your code.

iOS Technology Layers

● The Core OS and Core Services layers contain the
fundamental interfaces for iOS, including those used
for accessing low-level data types, network sockets,
and so on.

● On the upper layers you find more advanced
technologies. For example, the Media layer contains
the fundamental technologies used to support 2D and
3D drawing, audio, and video.

iOS Technology Layers

● Core OS:

OSX Kernel Power Management

Mach 3.0 Keychain Access

BSD Sockets Certificates

POSIX Threads File System

Security Bonjour and DNS Services

iOS Technology Layers

● Core Services:

Collections Core Location

Address Book Net Services

Networking Threading

File Access Preferences

SQLite URL Utilities

iOS Technology Layers

● Media:

Core Audio JPEG, PNG, TIFF

OpenAL PDF

Audio Mixing Quartz 2D

Audio Recording Core Animation

Video Playback OpenGL ES

iOS Technology Layers

● Cocoa Touch:

Multi-Touch Alerts

Core Motion Web View

View Hierarchy Map Kit

Localization Image Picker

Controls Camera

Practical Advice

● The starting point for any new project is the Cocoa
Touch layer, and the UIKit framework in particular.

● When deciding what additional technologies to use,
you should start with frameworks in the higher-level
layers.

● The higher-level frameworks make it easy to support
standard system behaviors with the least amount of
effort on your part.

● You should fall back to the lower-level frameworks
only if you want to implement custom behavior that is
not provided at a higher level.

Next Time

● MVC Design Concept

● Introduction to Swift

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

