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Grading System

● Grade options (either one):

1) 100% individual project

2) 100% final exam (computer test)*

(*) + 0.2p per lab attendance (up to 1p)
● In both cases, grade must be greater 

than 5 
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Introduction

● Mobile applications development is the process of 
building software applications for small handheld 
devices such as mobile phones, personal digital 
assistants, tablets, etc.



  

Introduction

● Platforms for mobile applications: 

Android, iOS, Windows Mobile, etc.

● Mobile applications are pre-installed on phones 
during manufacturing, or downloaded by customers 
from various mobile software distribution systems: 

App Store (iOS)

Google Play Store (Android)

Amazon Appstore (Android)

Microsoft Store (Windows Mobile), etc.



  

Key concepts

● Smartphones and tablets are becoming the computer 
of choice for more and more people.

● Despite the attention paid to mobile development in 
the last years, a lot of developers still lack the basics 
when it comes to building mobile applications.

● Many developers are just used to the desktop / web.



  

Key concepts

● Even if it may seem easy to make an application, it is 
hard to create a “good user experience”.

● Mobile devices have different limitations and features 
compared to the desktop computers.

● The emergence of mobile devices and their smaller 
screens means some serious adjustments in 
perspective.



  

Key concepts

● We need to make a transition to a new perspective.



  

Limitations of mobile devices

● Smaller screen:

● Instead of building for large PC screens (13 to 27 
inches wide), developers could be dealing with a 4 to 
6 inches wide Android, iPhone or BlackBerry screen.

● Because of the screen size constraint, every pixel 
counts to some degree.

● Even the iPad's larger screen (7.3 by 9.5 inches) 
needs to be considered differently because the 
screen resolution is still less that of most desktop 
monitors.



  

Limitations of mobile devices

● Less memory and bandwidth:

● Mobile devices really do not have a lot of memory.

● Although a typical PC can have 8-16 GB of memory, 
a smartphone might have just 512 MB.

(e.g.: developers loading 100 images of 10 MB onto a 
phone would quickly run out of memory)

● Network connectivity for smartphones and tablets 
incurs limits on downloading.

● Memory, space and battery life are some of the 
parameters that have to be taken into account when 
you develop all your apps.



  

Limitations of mobile devices

● Different user interaction:

● Mobile devices have no mouse. The physical 
keyboard is much smaller or even missing.

● This means mobile applications don't respond to 
double clicks or keyboard shortcuts.

● Most smartphones can interact using touch screens 
or capacitive displays. This can also be a feature.



  

Features of mobile devices

● Better user interaction:

● Most smartphones can interact using touch screens 
or capacitive displays.

● Capacitive displays enable the use of multi-touch 
gestures which allow a natural interaction with the 
device.

(e.g.: pinch-open to zoom in, pinch-close to zoom-out, 
swipe to delete, etc.)



  

Features of mobile devices

● Using multi-touch gestures

https://www.youtube.com/watch?v=TB5nnMZlZUM

https://www.youtube.com/watch?v=flR6mz788h0

https://www.youtube.com/watch?v=TB5nnMZlZUM


  

Features of mobile devices

● Using built-in devices:

● Most smartphones have built-in devices such as: 
camera, accelerometer, gyroscope, GPS, compass, 
etc.

● Mobile applications should make use of this 
capabilities whenever this is possible.

● E.g.: detecting the device orientation using the 
accelerometer (to adjust the display) can be used for 
creating a better user experience.

● E.g.: building augmented reality applications requires 
the GPS, the compass, the camera and even the 
accelerometer.



  

Features of mobile devices

● Using built-in devices for mobile applications



  

General Advices

● Focus on user experience: reduce navigation for 
users, go with defaults, remember what users did last 
time.

● Choose carefully between native and web 
development: web-based development is less 
expensive and not as complex, but it doesn't deliver 
the kind of experience the user might expect.

● Think about how to take advantage of location: 
location services enable developers to offer a more 
customized experience.



  

General Advices

● Design and code for touch interfaces: developers 
need to understand the user flows first, then translate 
the basis of touch interfaces into coding language.

● Expect users to make mistakes: developers should 
anticipate users pressing the wrong buttons. 

● Smaller size of smartphones and unfamiliar users 
guarantee input mistakes. Mobile applications should 
be more tolerant and recover without extra effort.



  

“Simple can be harder than complex: You have to work 
hard to get your thinking clean to make it simple. But it’s 
worth it in the end because once you get there, you can 
move mountains.” - Steve Jobs



  

Overview of the mobile environments

● Each of the platforms for mobile applications has an 
IDE which provides tools to allow a developer to 
write, test and deploy applications into the target 
platform environment.

● An alternative to native applications are web-based 
mobile applications which are less expensive to build. 
This alternative represents a trade-off between cost 
and user experience, e.g. we will not be able to use 
all device capabilities.



  

Android

● Developers can use the Android Studio IDE to build 
applications using the Kotlin or Java programming 
languages.

● Android is based on a Linux kernel with libraries and 
APIs written in C.

● There are more than over 1 million apps available for 
Android, that can be downloaded from online stores 
such as Google Play Store.



  

Windows Phone

● Developers can build applications with Visual Studio 
2010 IDE using the C# programming language.

● Windows Mobile is the successor of Windows Phone. 
It's a newer mobile operating system compared to 
Android and iOS.

● The applications are available in the Microsoft Store.



  

iOS

● Integrated with Xcode IDE. Developers must have 
Intel-based Mac computers and the latest Mac OS X 
installed.

● iOS applications can be developed using an open-
source programming language, called Swift. This is a 
modern OOP language designed to be more concise 
than Objective-C.

● iOS is based on a UNIX kernel with libraries written in 
C, Objective-C and Swift.



  

Requirements

● Must have an Intel-based Mac with MacOS 10.11.5 or 
later and Xcode 11.3.1.

● Hardware: 

iPhone 4 or later, iPod Touch 4th Generation or later, 
iPad 2 or later

● Textbook:

Apple online documentation

https://developer.apple.com/develop/

● Prerequisites:

Object-Oriented Programming Principles



  

Requirements

Object-Oriented Terms:

● Class (description/template for an object)

● Instance (manifestation of a class)

● Method (code invoked on an object)

● Instance Variable (object-specific storage) 

● Inheritance (code-sharing mechanism)

● Superclass/Subclass (Inheritance relationships)

● Protocol (non-class-specific method declaration)



  

What will I learn in this course?

● How to build cool iOS apps:

Easy to build even for very complex applications.

Join a vibrant development community.

● Real-life Object-Oriented Programming:

The heart of Cocoa Touch is 100% object-oriented.

Application of MVC design model.

● Many computer science concepts applied in a 
commercial development platform: Databases, 
Graphics, Multimedia, Multithreading, Animation, 
Networking and much more.

● We want you to be able to go on and sell products on 
the AppStore.



  

iOS Overview

● iOS comprises the operating system and 
technologies that you use to run applications 
natively on devices, such as iPad, iPhone, and iPod 
Touch.

● Although it shares a common heritage and many 
underlying technologies with Mac OS X, iOS was 
designed to meet the needs of a mobile 
environment, where users’ needs are slightly 
different.

● Some technologies are available only on iOS, such 
as the Multi-Touch interface and accelerometer 
support.



  

iOS SDK Overview

● The iOS SDK contains the code, information, and 
tools you need to develop, test, run, debug, and tune 
applications for iOS.

● Xcode provides the launching point for testing your 
applications on an iOS device, and in iOS Simulator.

● iOS Simulator is a platform that mimics the basic iOS 
environment but runs on your local Macintosh 
computer.



  

Platform Components

● Tools

● Language

label.textColor = UIColor.blueColor()

● Frameworks

● Design Strategies

MVC

Map Kit UI Kit

Foundation
Core Data

Core Motion



  

iOS SDK Overview

● Xcode and iOS Simulator:



  

iOS Technology Layers

● The kernel in iOS is based on a variant of the same 
basic Mach kernel that is found in Mac OS X. 

● On top of this UNIX kernel are the layers of services 
that are used to implement applications on the 
platform.

● This layering gives you choices when it comes to 
implementing your code. 



  

iOS Technology Layers

● The Core OS and Core Services layers contain the 
fundamental interfaces for iOS, including those used 
for accessing low-level data types, network sockets, 
and so on.

● On the upper layers you find more advanced 
technologies. For example, the Media layer contains 
the fundamental technologies used to support 2D and 
3D drawing, audio, and video.



  

iOS Technology Layers

● Core OS:

OSX Kernel Power Management

Mach 3.0 Keychain Access

BSD  Sockets Certificates

POSIX Threads     File System

Security Bonjour and DNS Services



  

iOS Technology Layers

● Core Services:

Collections Core Location

Address Book Net Services

Networking Threading

File Access Preferences

SQLite URL Utilities



  

iOS Technology Layers

● Media:

Core Audio JPEG, PNG, TIFF

OpenAL PDF

Audio Mixing     Quartz 2D

Audio Recording Core Animation

Video Playback     OpenGL ES



  

iOS Technology Layers

● Cocoa Touch:

Multi-Touch Alerts

Core Motion Web View

View Hierarchy Map Kit

Localization Image Picker

Controls Camera



  

Practical Advice

● The starting point for any new project is the Cocoa 
Touch layer, and the UIKit framework in particular.

● When deciding what additional technologies to use, 
you should start with frameworks in the higher-level 
layers.

● The higher-level frameworks make it easy to support 
standard system behaviors with the least amount of 
effort on your part.

● You should fall back to the lower-level frameworks 
only if you want to implement custom behavior that is 
not provided at a higher level.



  

Next Time

● MVC Design Concept

● Introduction to Swift
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