

Lab 9:
 Nearby Deals (5 of 6)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Task 1

Task: Add pins on the map for the nearby deals.

1. Launch Xcode and go to “File > Open” and select the Xcode project
(.xcodeproj) inside the “NearbyDeals(4of6)” folder.

2. Run the application in iOS Simulator and take a look over the
application to remember what was done last time.

3. Stop running the application.

4. In order to create annotations on the map, we need to know when
the nearby deals have loaded. Thus, the sharedModel must post a
notification inside the nearbyDeals setter. The Map View
Controller is going to be an observer of the sharedModel to
receive the notification. Upon receiving this notification, it will add
annotations on its Map View.

Switch to the DealsModel.m tab in Xcode.

5. Declare a new class method for the notification name in the header
file. Name it dealsUpdateNotificationName.

Task 1

Task: Add pins on the map for the nearby deals.

6. Implement the dealsUpdateNotificationName method so that it
returns the @”dealsUpdateNotification” string.

7. Implement the nearbyDeals setter to post the notification using the
previously implemented class method for its name.

Look over the next slide for help.

Task 1

Task: Add pins on the map for the nearby deals.

8. Let's configure the Map View Controller to add annotations on the
map when it receives the deals update notification.

Switch to the MainStoryboard.storyboard tab in Xcode.

9. Click on the Map View Controller in Interface Builder to select its
associated files in Assistant Editor.

Make sure MapViewController.h is selected.

10. Declare a method that will be executed when the Map View
Controller receives the notification about deals update. This method
will add annotations on the mapView. The method name should be
addDealAnnotationsForNotification: and it should have a
NSNotification argument.

The next screenshot shows how to declare this method in the
@interface.

Task 1

Task: Add pins on the map for the nearby deals.

11. Open the MapViewController.m in Assistant Editor and let's add the
implementation of addDealAnnotationsForNotification:.

12. The first thing to do is to #import the DealsModel and
DealAnnotation header files.

13. This method will go through the nearbyDeals array of the
sharedModel using a for-in block. For each deal it will add an
annotation. Remember that annotations have a title, a subtitle
and a coordinate (represented by latitude and longitude)
on the map. We obtain all this information from the deal's
NSDictionary.

To add annotations on the map we send the addAnnotation:
message to the mapView.

The next slides show how to perform these steps.

We are definitely not going to
add implementation to this

initializer so it's ok to delete it.

What happens when we receive a second
notification? We add new annotations on the
map, but the previously added annotations

have to be removed first. We do this by
sending the removeAnnotations:
message to the mapView like this.

Task 1

Task: Add pins on the map for the nearby deals.

14. The last thing to do is add the Map View Controller as an observer
of the @"dealsUpdateNotification".

As for the Table View Controller, we have to send the
addObserver:selector:name:object: message to the default
NSNotificationCenter in the viewDidLoad method.

15. Remove the Map View Controller observer in viewDidUnload.

The next slide shows how to perform these two steps.

16. Run the application in iOS Simulator.

17. Simulate locations using the BucharestLocations GPX file.

18. Look on the map for the added annotations (note that you have to
pan and zoom to find them). Tap on an annotation to see its callout.

19. Stop running the application.

Task 1

Task: Add pins on the map for the nearby deals.

20. The user shouldn't do any extra effort to find the pins on the map. It
would be nice to help the user by centering and zooming the map on
current user location. We can do this automatically when the
deviceLocation gets updated. The Map View Controller must
observe the sharedModel for location update notifications.

Switch to the MapViewController header file in Assistant Editor.

21. Declare a method that will zoom the map on the current user
location upon receiving a location update notification. Name this
method showMapRegionForNotification:.

Look over the next slide to see how to declare it.

Task 1

Task: Add pins on the map for the nearby deals.

22. Set the Map View Controller as an observer for the sharedModel
object to register for the @"locationUpdateNotification".

Switch to the MapViewController implementation file in Assistant Editor.

23. As soon as the viewDidLoads, we can register the observer by
sending the addObserver:selector:name:object: message
to the default NSNotificationCenter.

24. Implement the showMapRegionForNotification: method to
set the visible region of the map on current user location. The
region's span should be around 10 km.

To set mapView's region send the setRegion:animated:. Use
animation only if the Map View Controller is currently on screen
(check the self.view.hidden property).

Look over the next slides for help.

We set the visibleRegion to be
10 km (10000 meters) around the
current user location coordinates.

The map will animate to this region only
when the self.view is not hidden.

Task 1

Task: Add pins on the map for the nearby deals.

25. Run the application in iOS Simulator.

26. Go on the Map View tab and simulate locations using the
BucharestLocations GPX file.

27. Notice how the visible region of the map follows the user current
location. Stop simulating location updates.

28. Notice the user's location is no longer displayed on the map. This
happens because we remove all annotations from the map when the
Map View Controller receives the nearby deals update notification.

The user location pin is also an annotation and it shouldn't be removed.
There is an easy fix for this: stop showing the user location before
removing the pins, then start showing it again after the other pins
have been removed. The showsUserLocation BOOL property of
the mapView controls this.

Look over the next slide for hints.

Task 1

Task: Add pins on the map for the nearby deals.

29. When the application starts it will load only the Table View
Controller. The Map View Controller will load later when the user
goes on the second tab of the application. If the sharedModel
sends notifications before the Map View Controller is loaded (and its
viewDidLoad gets executed) it will never receive those
notifications. Thus the Map View Controller will not display any pins,
even if the nearby deals have loaded.

We have to add implementation to the viewDidLoad method to create
annotations for the current nearby deals (if any). We will also set the
visible region of the map on the current user location if it's different
from the initial (0,0) coordinates.

Look over the next slide for hints.

Task 1

Task: Add pins on the map for the nearby deals.

30. Run the application in iOS Simulator.

31. Simulate locations using the BucharestLocations GPX file.

32. Wait until you get nearby deals, then stop simulating location
updates.

33. Navigate to the second tab of the application. It should center and
zoom the map right from the beginning.

Everything should run smooth now.

Task 2

Task: Add functionality to access deal details by selecting a pin from
the map.

1. We want to be able to click on pins and see detailed information
about the associated deal in a new View Controller. Thus it is
necessary that each annotation knows about its deal.

We will add a new @property to the DealAnnotation class. This
property will be an int that will store the index of the deal in the
nearbyDeals NSArray object.

Switch to the AppDelegate.m tab in Xcode.

2. Select the DealAnnotation.m file on the left side of the Editor. The
DealAnnotation.h header should appear in Assistant Editor (on the
right side).

3. Declare and @synthesize a nonatomic int property named
index. Prefix its instance variable with underscore.

The next slide gives you a hint about this step.

Task 2

Task: Add functionality to access deal details by selecting a pin from
the map.

4. Switch back to the MainStoryboard.storyboard tab in Xcode. Make
sure the MapViewController.m is selected in Assistant Editor.

5. Let's use the index @property of each annotation to store the
index of the associated deals. To obtain the index of deal's
NSDictionary object we send the indexOfObject: message to
the nearbyDeals array.

Note that we have to modify the implementation of the viewDidLoad
and addDealAnnotationsForNotification: methods.

The next slides show how the two methods should be modified.

Also note that the code duplication will be resolved later in your first
assignment.

Task 2

Task: Add functionality to access deal details by selecting a pin from
the map.

4. We will customize the callout view of the annotation with left and
right accessory views. Next, we are going to focus on adding a detail
disclosure UIButton as the rightCalloutAccessoryView. We
do this in the mapView:viewForAnnotation: delegate method.

The Map View Controller needs to adopt the MKMapViewDelegate
protocol.

Select the Map View Controller header file in Assistant Editor.

5. Add the MKMapViewDelegate protocol after the superclass
declaration.

6. Return to the Map View Controller implementation file in Assistant
Editor and continue with the steps from the following slides.

Right-click on the Map View
to see this pop-up window.

Set the Map View Controller as
the delegate of the Map View.

Use #pragma mark to delimit
the section of code with

MKMapViewDelegate methods.

And let's add implementation
to this method.

Remember that the user location
is also an annotation. We have to
test using introspection that we

build pin views only for
DealAnnotations.

It's ok to cast the annotation to
the DealAnnotation strong

type here.

Try to dequeue an existing pin view.
If pinView is nil, we have to
build a new one from scratch.

We want the callout to be visible.
Set this property to YES.

Add a disclosure button
as the right accessory.

Set the pinView's annotation here.
In case the view is only dequeued,

this is absolutely necessary.

And return the
 pinView in the end.

The tag @property is simply an integer
that you can use to identify view objects in
the application. In our case we will use to

store the associated deal index.

Task 2

Task: Add functionality to access deal details by selecting a pin from
the map.

7. The next thing to do is to implement the MKMapViewDelegate
method that will get called when the accessory view is touched.

This method will simply perform a segue that we need to create in
Interface Builder first.

Make more room for the storyboard by selecting the standard Editor.

Follow the steps from the next slides to add and configure the segue.

CTRL-drag from the Map View Controller to the
Deal Details View Controller to create a segue.

Open the standard
Editor from here.

Choose “Push” for
the segue type.

Open Utilities area and switch
to the Attributes Inspector.

Make sure the segue is selected
from Interface Builder.

Type in “ShowAnnotationDetails”
for the segue identifier.

Task 2

Task: Add functionality to access deal details by selecting a pin from
the map.

8. Hide Utilities area and open Assistant Editor again.

9. Click on the Map View Controller in Interface Builder to see its
associated files in Assistant Editor. Select the MapViewController.m
file.

10. Add the following method to the Map View delegate methods
section of code:

 mapView:annotationView:calloutAccessoryControlTapped:.

11. Implement this method to perform the “ShowAnnotationDetails”
segue. Use the performSegueWithIdentifier:sender: and
pass the MKAnnotationView object as the sender argument.

Look over the next slide for hints.

Task 2

Task: Add functionality to access deal details by selecting a pin from
the map.

12. The Map View Controller must prepare for this segue in a very
similar way to the Table View Controller. Let's copy and paste the
prepareForSegue:sender: from the Table View Controller
implementation file.

13. Note that we have to #import the “DealDetailsViewController.h”
header file.

14. Use introspection to verify that the sender argument
isKindOfClass: MKAnnotationView. Cast the sender to the
MKAnnotationView strong type and save it in a local variable
named pinView.

We have to pass the deal URL to the Deal Details View Controller. Use
the pinView.tag to get the URL of the appropriate deal from the
nearbyDeals array.

Look over the next slide for help.

Note that we also copied the
#pragma mark directive from

the Table View Controller.

Task 2

Task: Add functionality to access deal details by selecting a pin from
the map.

15. Run the application in iOS Simulator.

16. Simulate locations using the BucharestLocations GPX file.

17. Wait until you get nearby deals, then stop simulating location
updates.

18. Navigate to the second tab of the application. Tap on a pin from the
map to see its callout view. Tap on the disclosure button to see
details about that deal.

19. Note that there is no way to return to the Map View because the
Navigation Bar is hidden.

20. Stop running the application and let's fix this.

Task 2

Task: Add functionality to access deal details by selecting a pin from
the map.

21. Click on the Deal Details View Controller in Interface Builder and
select the DealDetailsViewController.m file in Assistant Editor.

22. To make sure that the Navigation Bar is always visible on screen
we must set the navigationBarHidden BOOL @property of the
navigationController to NO, right when viewWillAppear:.

23. But because it's the same navigation controller of the Map View
Controller, setting this property to NO will also make the Navigation
Bar visible on the Map View. The solution is to set this property to
YES when the Map View will appear on screen.

Click on the Map View Controller in Interface Builder and select the
MapViewController.m file in Assistant Editor.

24. Implement the viewWillAppear: method and let super prepare
for the viewWillAppear: event. Set navigationBarHidden to
YES. Look over the next slide to see how to implement this.

Task 3

Task: Add thumbnail images to the pin callout views on the map.

1. In a similar fashion to the Table View Controller we can download the
thumbnail images synchronously before the callout view appears on
screen. But if we look closer at the Table View Controller we will
notice that scrolling through the nearby deals list is not very fluent.
This happens because each Table View Cell has to wait for its
thumbnail to download before it can appear on screen.

A solution to this problem is to load images asynchronously. Let's do
this right now using the Grand Central Dispatch API.

Switch to the DealsModel.m tab in Xcode.

2. Add (and @synthesize) an NSMutableDictionary @property
that will hold our downloaded thumbnail images. Each object in this
dictionary will be an NSData stream and its key will the image URL.

3. Prefix the instance variable with underscore in the @synthesize
declaration. It should look like in the following screenshot.

Task 3

Task: Add thumbnail images to the pin callout views on the map.

4. We should start downloading the thumbnail images right after the
nearbyDeals is set. Thus we will and implementation to its setter.

We use a serial dispatch queue to download images and save them in
the images NSMutableDictionary. We will add images one by
one and store them as NSData objects (streams of bytes).

Follow the instructions from the next slide to finish this step.

This is C API so the strings
are char * (no @ here).

Create a dispatch serial queue first.

The task will be given through a block
(notice the ^ symbol) with no arguments.

We take every deal and download its thumbnail
in a task assigned to our downloadQueue.

This block will be executed in the serial queue
in a separate thread. It simply downloads the

image data from the URL.

Add the thumbnailData to the dictionary. Note that
images should be initialized at this moment. We
have to implement its getter and lazily initialize it.

 Release the downloadQueue. Don't worry, it
will stay in the heap until it finishes all its tasks.

 Implement the images dictionary
getter and lazily initialize the

instance variable when it's nil.

Note that images is nil, but it
should be initialized at this moment.

Task 3

Task: Add thumbnail images to the pin callout views on the map.

5. The images are downloaded asynchronously. But before assigning
them as the left accessory of callout views, we have to consider the
situation when the callout appears before the application has a
chance to download them. It would be nice to display a default
thumbnail in this case.

Let's copy and paste the “default-thumb.png” image to our Images
subfolder in our Project's folder.

6. Open Project Navigator.

7. Right-click on the Images folder and select the “Add Files to
NearbyDeals ...” option.

8. Navigate to the Images subfolder and choose the file named
“default-thumb.png”.

9. Click Add to make this image visible to our Project.

The following screenshot gives you a hint.

Task 3

Task: Add thumbnail images to the pin callout views on the map.

10. We have everything that we need in order to create the
leftCalloutAccessoryView for each pin.

Hide Project Navigator to make more room for code.

11. Switch to the MainStoryboard.storyboard tab in Xcode.

12. Make sure the MapViewController.m is selected in Assistant Editor.

13. Let's add implementation to the mapView:viewForAnnotation:
delegate method. Initialize an UIImageView object using
initWithFrame: and pass the (0, 0, 30, 30) frame as argument.
Note that the image @property will be nil (since we only set the
frame).

Set the leftCalloutAccessoryView to this image view.

Look over the next screenshot to see what needs to be done for this
step.

Task 3

Task: Add thumbnail images to the pin callout views on the map.

14. We created the left accessory view, but its image is nil (thus
nothing to display in the callout view).

We should set the image to an actual image (default or downloaded
asynchronously) before presenting the callout view. But we must do
this as late as possible because we want to let as much time as
possible for downloading the thumbnail images.

Let's implement the mapView:didSelectAnnotationView:
delegate method and set the image there.

Look over the next slides for help in completing this step.

Verify using introspection that the left
accessory view is an UIImageView.

And strong cast it to an UIImageView.

Get the associated deal from
the nearbyDeals array.
Note that we use the tag

property for this.

The image data is contained in the
images NSMutableDictionary.
We use objectForKey: to get it.

If the image hasn't been downloaded yet
then imageData is nil here. We use the

default thumbnail image in this case.

Task 3

Task: Add thumbnail images to the pin callout views on the map.

15. Run the application in iOS Simulator.

16. Simulate locations using the BucharestLocations GPX file.

17. Wait until you get nearby deals, then stop simulating location
updates.

18. Navigate to the second tab of the application. Tap on a pin from the
map to see its callout view. Notice the image on left side of the
callout view.

Tap on the disclosure button to see details about that deal.

19. Note that you can return to the Map View using the “Back” button
on the Navigation Bar.

20. All is good. Stop running the application.

Assignment 1
Assignment: Remove the duplicate code from the MapViewController.m

implementation.

Hint: Declare a new private method called addDealAnnotations and
put the duplicate code inside it. Look in the viewDidLoad and
addDealAnnotationsForNotification: implementations to
find the duplicate code.

Assignment 2
Assignment: Download the images only if they are not in the dictionary.

Hint: Before putting a task (to download a thumbnail image) in the
downloadQueue, verify that the image is not already in the
dictionary of images.

This may happen when the application receives a location update and
it tries to request new nearby deals from the server. It may be that
the server will return some of the older deals for the new location (if
the two locations are not too far apart). The associated images of
those deals should already be in the dictionary (no need to
download them again).

Assignment 3*
Assignment: Use the asynchronously downloaded images for Table

View cells to make the Table View more responsive.

Hints: You have to re-implement the Table View delegate method
tableView:cellForRowAtIndexPath:. Stop downloading
images synchronously and use the images dictionary of the
sharedModel instead (in a similar way to the Map View Controller).

Think about what happens if the Table View loads before the images
have a chance to be downloaded. You should send the
reloadData message to the tableView after the images have
been downloaded.

To find out when the images have downloaded add another task to the
downloadQueue that posts a notification. Name this notification
something like “didDownloadImagesNotification”.

The Table View Controller should observe this notification and reload
the cells. You would probably have to declare another method
(reloadDataForNotification:) that will get executed when the
Table View Controller receives the notification.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

