

Lab 8:
 Nearby Deals (4 of 6)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Task 1

Task: Add Locations Services as a required device capability.

1. Launch Xcode and go to “File > Open” and select the Xcode project
(.xcodeproj) inside the “NearbyDeals(3of6)” folder.

2. Run the application in iOS Simulator and take a look over the
application to remember what was done last time.

3. Stop running the application.

4. We will use Locations Services (through the Core Location
framework that is already included in our Project) to determine the
device location. The device location is needed when the application
requests nearby deals from the GeoAds+ server.

Our application will not function (as the user expects) if the device
location is not available. In other words, the device location is a
required device capability for our application.

Follow the steps from the next slides to understand how to declare a
required device capability.

Open Project Navigator.

Then select the target application.

Click on the Project in Project Navigator.

And expand the “Required device capabilities” property.
This property contains a list of device capabilities

(such as camera, location services, accelerometer, etc)
that you require for your application. This list lets iTunes
and the App Store know which device-related features
an application requires in order to run. iTunes and the

mobile App Store use this list to prevent customers from
 installing applications on a device that does not support

 the listed capabilities. A list of possible capabilities
can be found in Apple's documentation if you search

 for UIRequiredDeviceCapabilities.

Make sure “Custom iOS
Target Properties” is expanded.

Go to the Info tab here.

Let's require a new capability by
clicking this “+” button right here.

Type in “location-services” and
press Enter. Then CMD+S to save.

Task 2

Task: Set up a CLLocationManager to receive location information in
your application.

1. Create a new tab in Xcode (use the CMD+T shortcut keys).

2. Select AppDelegate.m in Project Navigator. Then close Project
Navigator.

3. Open Assistant editor to have the AppDelegate.h header file on
screen too.

4. Let's #import the Core Location framework into our AppDelegate
header.

5. Add a new @property for the CLLocationManager that will get
the device location for us.

6. Our application delegate will also be the CLLocationManager
delegate, so let's declare that we implement the associated protocol
(CLLocationManagerDelegate).

Look over the next screenshot to see how to do the above steps.

The AppDelegate header
file should look like this.

Task 2

Task: Set up a CLLocationManager to receive location information in
your application.

7. In the AppDelegate implementation file, #synthesize the
locationManager property and rename its instance variable by
prefixing it with underscore.

8. Similar to View Controllers, the application itself has a life cycle. The
UIApplicationDelegate protocol declares methods that are
implemented by the delegate of the singleton UIApplication
object. These methods provide you with information about key
events in an application’s life cycle such as when it finished
launching, when it is about to be terminated, when memory is low,
and when important changes occur.

Let's initialize the locationManager when the application has
finished launching and configure it to respond to other application
events.

Look over the next screenshots to see how to do the above steps.

Let's implement the application:didFinishLaunchingWithOptions first. In
general, you use this method to initialize your application and prepare it for running.

It is called after your application has been launched. Launch time is a particularly
important point in an application’s life cycle. In addition to the user launching an

application by tapping its icon, an application can be launched in order to respond
to a specific type of event. For example, it could be launched in response to an

incoming push notification or when it is asked to open a file. In all of these cases,
the launchOptions NSDictionary provides information about the reason for

the launch.

Let's initialize the locationManager here.

Create the locationManager with alloc/init.

Set the distanceFilter and the desiredAccuracy
to receive location updates when the device location

changes by a few dozen meters.

Tell locationManager to start
 updating the delegate with locations.

Let's implement the applicationWillResignActive: method
and stop receiving location updates from the locationManager.
This method is called when your application is about to move from

the active to inactive state. This can occur for certain types of
temporary interruptions (such as an incoming phone call or SMS

message) or when the user quits the application and it begins
the transition to the background state.

The applicationDidEnterBackground: method
is called when the user quits an application by pressing
the Home button. Your implementation of this method
has approximately five seconds to perform any tasks
and return. We don't need location updates when the

 application goes in background so let's tell
locationManager to stop updating us.

We'll test to see when the application goes
in background. Let's put an NSLog here.

The applicationWillEnterForeground: method is called as part
of the transition from the background to the inactive state. You can use
this method to undo many of the changes you made to your application

upon entering the background. The call to this method is invariably
followed by a call to the applicationDidBecomeActive: method.

Let's implement applicationDidBecomeActive: and start updating
the location again.

We'll test to see when the application goes
active. Let's put an NSLog here too.

Task 2

Task: Set up a CLLocationManager to receive location information in
your application.

9. Next we should implement the CLLocationManager's delegate
methods.

Let's #pragma mark this section of code and put it at the end of the
AppDelegate implementation block (right before @end).

10. The delegate object will get location updates when it receives the
locationManager:didUpdateToLocation:fromLocation:
message.

Implement this method and let's print the device location to the console
using an NSLog().

Next screenshot shows how to do this.

Task 2

Task: Set up a CLLocationManager to receive location information in
your application.

11. Your delegate object will get notified if the locationManager is
unable to determine the device location by receiving the
locationManager:didFailWithError: message.

If it reports a kCLErrorLocationUnknown error, we can simply
ignore the error and wait for a new event (the locationManager
keeps trying to get the device location).

If the user denies your application’s use of the Location Services, this
method reports a kCLErrorDenied error. In this case, it's best to
let the user know our application can't function without this service.
We will show up and UIAlertView with an appropriate message.

Look over the next screenshot to see how to implement this method.

Task 2

Task: Set up a CLLocationManager to receive location information in
your application.

12. Run the application in iOS Simulator.

13. You will be asked to enable Location Services for this application.
Deny this request to test what happens wit our application.

The error message should appear on screen. Click “Ok” to dismiss it.

14. Click on the Home button to put the application in background.
Then open it up again. Notice the messages that appear on the
console.

The error message should appear again. Click “Ok” to dismiss it.

15. Go to the Settings app and turn on Location Services for our
application. Open the application again and look for the location
messages in the console.

16. Stop running the application.

Task 2

Task: Set up a CLLocationManager to receive location information in
your application.

17. Our application is now configured to receive location updates
whenever the device location changes. The next thing to do is to
save the current device location into our DealsModel.

Go to the DealsModel.m tab in Xcode.

18. Let's add a @property called deviceLocation that will be a
pointer to a CLLocation object. It has to be strong since no one
else refers to it.

19. You will also have to #import the Core Location framework in the
DealsModel header file.

20. As usual, #synthesize this property in the implementation file
and rename its instance variable.

Look over the next slide for hints.

Task 2

Task: Set up a CLLocationManager to receive location information in
your application.

21. We have to set the deviceLocation of the sharedModel when
our AppDelegate receives location updates.

Go to the AppDelegate.m tab in Xcode.

22. The first thing to do is to #import the “DealsModel.h” file into our
AppDelegate implementation file.

23. Re-implement the CLLocationManager's delegate method
locationManager:didUpdateToLocation:fromLocation:
to save the device location into our sharedModel.

We will update the deviceLocation only when the newLocation is
at least 100 meters away from the previous deviceLocation
saved.

Also delete the NSLog() that was printing locations on the console.

Look over the next slides for hints.

The first time this method gets executed deviceLocation
is nil. We must set it to the newLocation in this case.

We use the distanceFromLocation: method to compute
the distance (in meters) between two CLLocations.

Task 3

Task: Configure the Deals Table View Controller to load deals near the
device location.

1. We have saved the device location into our application's Model. We
need to find a way to let the Deals Table View Controller know about
the updated device locations. Recall the MVC design pattern. Using
Notification Center and Key-Value Observation, the sharedModel
can send notifications to its observers when a device location
update occurs. We will add the Deals Table View Controller as an
observer of the sharedModel. Upon receiving a notification our
Table View Controller will make a request to the GeoAds+ API using
the new device location.

First, go to the DealsModel.m tab in Xcode. Add a public class method
that will return the notification name that will be sent when the
deviceLocation setter gets called. Name this class method
locationUpdateNotificationName. Implement it to return the
@”LocationUpdateNotification” string.

Look over the next slide for hints.

This method is sort of a constant
NSString specific to the DealsModel class.

Task 3

Task: Configure the Deals Table View Controller to load deals near the
device location.

2. Whenever the deviceLocation is updated with a new value, we
should post the notification to our Model's observers. To post the
notification we have to implement the setter of this @property.

Besides setting the value of the associated instance variable, we send
the postNotificationName:object: message to the default
NSNotificationCenter.

Note that we will discuss notifications in detail in the last lecture.

Look over the next slide for help.

The observed object is going to be self. From
outside this class it will be the sharedModel.

Task 3

Task: Configure the Deals Table View Controller to load deals near the
device location.

3. Switch to the MainStoryboard.storyboard tab in Xcode.

4. Select the Table View Controller from Interface Builder to see the
associated class files in Assistant Editor.

Make sure the DealsTableViewController.h file is selected in Assistant
Editor.

5. Declare a new instance method that will be executed when our Table
View Controller receives the location update notification. Name this
method requestDealsNearLocationForNotification:.

Look over the next slide for help.

Task 3

Task: Configure the Deals Table View Controller to load deals near the
device location.

6. Select DealsTableViewController.m implementation file in Assistant
Editor.

7. Implement requestDealsNearLocationForNotification:.
This method should get the deviceLocation from the
sharedModel of our application.

Then, it should send the requestDealsNearLocation:limit:
message to self using the latitude and longitude provided by our
our sharedModel.

8. The requestDealsNearLocation:limit: message from the
viewDidAppear: method is no longer necessary. We can delete
the viewDidAppear: implementation.

Look over the next slides for help.

Delete this code that makes a request
from a hard-coded location.

Task 3

Task: Configure the Deals Table View Controller to load deals near the
device location.

9. There is one more thing to do: to add the Deals Table View
Controller as an observer for the deviceLocation object of our
sharedModel.

As soon as the viewDidLoads, we can register the observer by
sending the addObserver:selector:name:object: message
to the default NSNotificationCenter.

10. It is our job to remove the observer before it gets deallocated. We
will send the removeObserver: message to the defaultCenter
in the viewDidUnload method.

Look over the next slide to see how to add implementation for these
two methods.

Task 3

Task: Configure the Deals Table View Controller to load deals near the
device location.

11. In order to simulate a device location near Bucharest in iOS
Simulator we are going to add a GPX file to our Project.

The GPX file will contain a few locations from Bucharest.

Follow the steps from the next slides to create this file and add it to our
Project.

Add a new file by selecting this option
from the File Menu or by using the

CMD+N shortcut keys.

Select Resource file types from this list.

And then choose the GPX file type.

Click Next, name the file
“BucharestLocations” and Save it.

Add two locations from Bucharest city.
Note the GPX format is actually an XML.

Select the MainStoryboard.storyboard
file from the Navigation Bar.

Task 3

Task: Configure the Deals Table View Controller to load deals near the
device location.

12. Run the application in iOS Simulator.

Follow the steps from the next slides to test location updates.

Simulate locations updates by choosing
the BucharestLocations GPX file from

this list.

Xcode will simulate the locations we
provided in our GPX file several times.

Because the locations are more than 100
meters away, the deviceLocation from
our sharedModel gets updated for each

 simulated location. The notifications received
by our Table View Controller will trigger

several requests for nearby deals. Thus,
the list of deals continuously changes.

Stop simulating location updates
by selecting this option. Notice

the Table View Controller doesn't
change its content anymore.

Stop running the application
when you are done with testing

the location updates.

Task 4

Task: Add the Map Kit framework and create the map view.

1. The Deals Table View Controller is almost done. We are going to
focus on creating the Map View of our application. The Map View
will be annotated with pins for each nearby deal.

When the user selects a pin it will display a callout with deal information
and a disclosure button to access deal details. The deal details will
be presented in a Deal Details View Controller (we already have this
View Controller).

Open Project Navigator and select the Project itself.

2. Select the Target application and make sure you are on the “Build
Phases” tab.

3. Expand “Link Binary With Libraries” and click the “+” button to add a
new library.

Continue with the steps from next slides.

Type in “MapKit” in this search box, then
select the “MapKit.framework” in the list below.

Click Add to add this
framework to your Project.

Don't forget to drag the MapKit framework to
the Frameworks group in Project Navigator.

Task 4

Task: Add the Map Kit framework and create the map view.

4. Let's add a class that conforms to the MKAnnotation protocol. The
Map View annotations will be objects of this class.

Right-click on the NearbyDeals group in Project Navigator and select
the “New File...” option.

5. Choose the “Cocoa Touch > Objective-C class” template file and
click Next.

6. Type in “DealAnnotation” for the class name and make it a subclass
of NSObject.

7. Make sure the NearbyDeals subfolder in your Project folder is
selected for the files location. Click Create.

8. It would be nice to organize your files in Project Navigator. Drag the
DealAnnotation.h and DealAnnotation.m files above the DealsModel
files. Make sure everything is set up as in the following screenshot
before moving on.

Task 4

Task: Add the Map Kit framework and create the map view.

9. Next, let us implement the DealAnnotation class so that it
conforms to the MKAnnotation protocol.

Hide Project Navigator to make more room.

10. The first thing to do is to #import the MapKit framework into our
header file (the one that contains the @interface block) to know
about the MKAnnotation protocol.

11. We declare the MKAnnotation protocol right after the superclass
declaration. An object that adopts this protocol must implement the
coordinate property. We are also going to implement the title
and subtitle optional properties.

Follow the steps from the next slides to finish the DealAnnotation
class implementation.

The copy declaration implies a strong
 pointer type and it means that the setter will
copy the argument object before assigning

 it to this @property.

These warnings are here because the
coordinate, title and subtitle

properties need to be #synthesized.

Let's #synthesize the setters
and getters of our properties.

Task 4

Task: Add the Map Kit framework and create the map view.

12. Open Project Navigator and right-click on the NearbyDeals group to
create a “New File...”.

13. Choose “Cocoa Touch > Objective-C class”. Click Next.

14. Name the class “MapViewController” and make it a subclass of
UIViewController. Click Next.

15. Make sure the files location is the NearbyDeals subfolder and click
Create.

16. Drag the new files right before the “Supporting Files” group in
Project Navigator.

17. Select the MainStoryboard.storyboard file in Project Navigator. You
can close Project Navigator to make room for what's next.

18. Open Utilities area and follow the steps from the next slides to
associate the MapViewController class to the right View
Controller in the storyboard file.

Double click somewhere on the
background to zoom out.

Then select this View Controller.

Let's embed it in a
Navigation Controller.

We need as much room as possible
for the Map View. Uncheck the

“Bar Visibility” option here.

Click on this View Controller.

Go to the Identity Inspector tab.

And select the
MapViewController

class here.

And search for a Map View
in Object Library.

Double click somewhere on the
background to zoom in.

Drag a Map View from the Object Library to your View.

Place it in the center of the screen.
Let the blue delimitation lines help you.

And check this option to show
the user location on the map.

Choose Attributes Inspector.

CTRL-drag to create an
outlet for the MKMapView.

Name this outlet “mapView”.

Make sure Weak Storage is
selected and click Connect.

This class doesn't know about
MKMapView. Let's #import

the MapKit framework to solve
this problem.

Task 4

Task: Add the Map Kit framework and create the map view.

19. Select the MapViewController.m file in Assistant Editor.

20. Rename the instance variable of the mapView @property by
prefixing it with underscore.

21. Test the application in iOS Simulator.

22. Simulate locations using the BucharestLocations GPX file.

23. Go on the second tab of the application (the one that displays the
map). Find the user location marked by a rounded blue pin.

24. Stop running the application.

We are going to configure the Map View during the next lab. Try to
solve the assignments for now.

Assignment 1
Assignment: Remove the NSLogs from the handler methods that get

executed when application life cycle events occur.

Hint: These methods are in the AppDelegate.m file.

Assignment 2
Assignment: Add a getter for the deviceLocation @property of the

sharedModel that will lazily instantiate it.

Also find and remove the unnecessary code from the
locationManager:didUpdateToLocation:fromLocation:.

Hint: Use the initWithLatitude:longitude: to initialize the
CLLocation object. Pass zero as the arguments of this method.

When the CLLocationManager updates us with a new location
(especially the first time) we no longer have to test if the
deviceLocation is nil since it gets lazily instantiated in its getter.

Assignment 3
Assignment: Add a refresh button on the right side of navigation bar of

the Table View Controller. The refresh button action is to make a
new request to the GeoAds+ server for nearby deals.

Hint: Drag and drop a UIBarButtonItem from Object Library. Set its
Identifier to “Refresh” in Attributes Inspector. Create a new action for
it and make a requestDealsNearLocation:limit: using the
current device location.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

