

Lab 7:
 Nearby Deals (3 of 6)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Task 1

Task: Add a Model that will hold the nearby deals received from the
server.

1. Launch Xcode and go to “File > Open” and select the Xcode project
(.xcodeproj) inside the “NearbyDeals(2of6)” folder. You can also
double-click on the .xcodeproj file to open it in Xcode.

2. Run the application in iOS Simulator and take a look over the
application to remember what was done last time.

3. Stop running the application.

4. We start by adding a new class to our Project. This class will be the
Model of our application and it will be used by both list and map
Views.

Open Project Navigator and right-click on the NearbyDeals group.
Select the “New File...” option.

5. Select Objective-C Class from the pop-up window and click Next.

Task 1

Task: Add a Model that will hold the nearby deals received from the
server.

6. Name the class DealsModel and set it as a subclass of NSObject.
Then click Next.

7. Choose the NearbyDeals subfolder to place the .h and .m files inside
it. Click Create.

8. Create a new Tab (use the CMD + T shortcut for this) and make sure
Assistant Editor is opened. Then, click on DealsModel.m in Project
Navigator to open it on the left side of the Assistant Editor.
DealsModels.h should be automatically selected (if Assistant Editor
is in automatic mode) on the right side.

9. Hide Projector Navigator and let's create our Model. Follow the steps
from the following slides to accomplish this task.

Let's define a public @property
named nearbyDeals that will be
a pointer to an NSArray object. It
will hold the deals received from
the GeoAds+ server that we use
throughout the entire application.

Because we hold the only reference
to this object it needs to be strong,

otherwise it will get deallocated to
soon and we don't want that.

Synthesize this property in the DealsModel
implementation. Also rename its instance
variable by adding the underscore prefix.

We want to initialize and use a DealsModel object
that can be shared (accessed) by any View Controller
in our application. In this case, a very common pattern
is to declare a class method in DealsModel itself. This
method always returns the same DealsModel object.

The sharedModel class method returns a pointer
to the same DealsModel object. This object is lazily

instantiated. More exactly, it get created when the
sharedModel message is sent for the first time.

Let's implement the sharedModel class method
here. Declare a static DealsModel object to be
sure that we use the same object each time this

method is executed.

During the first call the sharedModel
object is nil. We need to initialize it.

Task 2

Task: Change the DealsTableViewController class so that it uses the
new shared Model.

1. Switch to the MainStoryboard.storyboard tab in Xcode.

2. Click on the Deals Table View Controller in Interface Builder and
select DealsTableViewController.m file in Assistant Editor.

3. In oder to use the shared Model of the application we need to
#import the “DealsModel.h” header file.

4. Scroll down to the connectionDidFinishLoading: method and
modify it so that it sets the shared Model of the application. The
nearbyDeals array will not be used anymore. Instead, the Model
of our Table View Controller will be the NSArray of deals from the
sharedModel. Note that we need to tell the tableView to
reloadData in this method (and every time the sharedModel
changes the list of nearbyDeals).

Look at the next screenshot to see how to implement the
connectionDidFinishLoading: method.

Set the nearbyDeals @property of the
sharedModel to the array of deals extracted

from the XML received from GeoAds+.

Task 2

Task: Change the DealsTableViewController class so that it uses the
new shared Model.

5. Next, we have to adjust the Table View dataSource methods so
that we use the deals array from the new sharedModel.

The tableView:numberOfRowsInSection: method should return
the number of deals inside the sharedModel.

Look at the next screenshot to see how to re-implement this method.

Task 2

Task: Change the DealsTableViewController class so that it uses the
new shared Model.

6. Build the UITableView cells from the sharedModel of the
application.

The method tableView:cellForRowAtIndexPath: needs to be
re-implemented so that it returns UITableViewCells configured
using the sharedModel's deals array.

Look at the next screenshot to see how to re-implement this method.

7. Delete the nearbyDeals private @property from the Table View
Controller since we don't use it anymore. Don't forget to delete the
@synthesize declaration and its setter too.

Delete this @property declaration.

And this @synthesize declaration.

Delete this setter method too.

Task 2

Task: Change the DealsTableViewController class so that it uses the
new shared Model.

8. We have a small problem with our sharedModel that we need to
solve. The sharedModel is reloaded each time the Table View
Controller appears on screen. This happens when our Controller
receives the viewDidAppear: message and makes a request to
the GeoAds+ API with this line of code:

 [self requestDealsNearLocation:deviceLocation
 limit:20];

Let's put an NSLog in the viewDidAppear: method implementation to
see when it gets executed. Check out the next slide for this.

9. Run the application in iOS Simulator. Change between the tabs of
the application. Also try to check out details about a deal when you
are in list View. Go back from the details View. Notice in the console
that is viewDidAppear: executed several times. We don't want
make server requests each time the Table View appears on screen.

Task 2

Task: Change the DealsTableViewController class so that it uses the
new shared Model.

10. Change the viewDidAppear: implementation in order to make
server requests only when the nearbyDeals NSArray of the
sharedModel is nil.

The idea is that we want to receive deals from the GeoAds+ server
only when our local list is empty. We don't want to make server
requests that are not necessary.

This method implementation can be seen on the next slide.

Task 3

Task: Configure the View Controller that presents deal details.

1. Our Table View Controller segues to a View Controller that presents
details about a deal. This View Controller from Interface Builder is
associated with the ViewController class. The name of this class
is too generic. Let's add the “DealDetails” prefix to make it more
specific.

Switch to the MainStoryboard.storyboard tab in Xcode. Select the View
Controller that should display details about a deal.

2. Follow the steps from the following slides to understand how to
refactor the ViewController class.

Double-click on the ViewController class
name to select it. Then right-click on the
selection to see the available options.

Then choose the
“Refactor > Rename”
 option to rename the

 ViewController class
and associated files.

Add the “DealDetails” prefix here.
The new class name should be

DealDetailsViewController.

Make sure that “Rename related files”
is checked, then click Preview.

This is a Preview of how the modified
files will look like after refactoring.

The files that are listed here get modified.
When you click on a file from this list

you will see the new (after refactoring)
and old (before refactoring) versions

of that file. Let's check out the changes
in every file listed here.

This is the new version of the
MainStoryboard.storyboard file
(which is in fact an XML file).

This is the old version
of the same file.

All the changes are
highlighted like this.

You can click and edit a line of code
yourself if you are not satisfied with

the change proposed by the
refactoring mechanism.

Everything is fine in our case.
Let's apply the changes by

clicking here.

Task 3

Task: Configure the View Controller that presents deal details.

3. You may be asked to create a snapshot of your Project. Click
Enable and continue. By default Xcode creates a snapshot
automatically before a major change such as refactoring your code
or executing a find & replace operation. In general, you can change
this option from "File > Project Settings (or Workspace Settings)".

Note that you can also create a snapshot manually by choosing "File >
Create Snapshot". To see the snapshots for a project or workspace,
click the project in the Projects pane of the Organizer window.

To restore a snapshot, choose Restore Snapshot from the File menu
and select the snapshot to restore. When you click Restore, Xcode
replaces the current version of the project with the version in the
snapshot. Xcode makes a snapshot of the current version before
replacing it.

4. Let's open Organizer and see our Project's Snapshots.

This is a snapshot of our Project
before renaming the ViewController

class to DealDetailsViewController.

Open Organizer from here.

And switch to the Projects tab.

Task 3

Task: Configure the View Controller that presents deal details.

5. Close Organizer and continue with the configuration of the Deal
Details View Controller from Interface Builder.

Select the MainStoryboard.storyboard file (if it's not already selected) to
make some changes.

6. The URL of a deal opens a HTML page with details about that deal.
This is exactly what we need. We will add an UIWebView to our
View Controller and open the URL when the View appears on
screen.

7. Open Utilities area.

8. Drag and drop an UIWebView from Object Library. Make sure it
occupies the entire View before you drop it.

Check out the next screenshot to see how the UIWebView should look
like.

Drag the Web View from the Object Library to your View.

Make sure it occupies the entire View.

Task 3

Task: Configure the View Controller that presents deal details.

9. Check the “Scales Page to Fit” option in Attributes Inspector.

This will set the scalesPageToFit property to YES. In this case, the
webpage is scaled to fit the View and the user can zoom in and
zoom out. If scalesPageToFit is NO, user zooming is disabled.
The default value is NO.

10. Select DealDetailsViewController.h in Assistant Editor.

11. CTRL-drag from the UIWebView to the @interface block inside
DealDetailsViewController.h to create an outlet for this Web View.

Follow the steps from the next slides to finish adding the outlet.

CTRL-drag to create an outlet.

Check the “Scales Page to Fit”
option from here.

Name the outlet “webView”.

And select the
Weak Storage type.

Then click Connect.

Task 3

Task: Configure the View Controller that presents deal details.

12. We want to load a webpage inside our Web View from the deal's
URL address. To let the user know that we are about to load a
webpage in our View Controller, we will use an Activity Indicator.
While we are loading the webpage, this Activity Indicator will
animate a spinning wheel. We have to stop this animation when the
page is loaded. Therefore, our View Controller should be set as the
UIWebView's delegate object and it must conform to the
UIWebViewDelegate protocol (we want to add custom behavior to
our Web View).

In Interface Builder right-click on the Web View.

13. Drag from the delegate outlet to the View Controller icon placed
under the View of this View Controller.

Look at the next screenshot to understand exactly how to do this.

This pop-up window appears when
you right-click on the Web View.

Task 3

Task: Configure the View Controller that presents deal details.

14. Declare that the Deal Details View Controller conforms to the
UIWebViewDelegate protocol right after the UIViewController
superclass in the @interface declaration.

We will implement the methods from the UIWebViewDelegate
protocol in a moment.

15. Drag and drop an Activity Indicator View from Object Library. Place
it over the Web View in the center of the screen.

16. Check the “Hides When Stopped” option. Watch what happens with
the Hidden property of the Activity Indicator.

17. CTRL-drag from the UIActivityIndicatorView to the
DealDetailsViewController @interface to create an outlet.

18. Name this outlet “activityIndicator” and select the Weak Storage.

Look over the next slides for hints.

Drag the Activity Indicator from the Object Library to your View.

Declare that our View Controller conforms
to the UIWebViewDelegate protocol.

Place it in the center of the screen.
Let the blue delimitation lines help you.

Then CTRL-drag to create an outlet.

Check the “Hides When
Stopped” option from here.

Note that the Hidden property
is automatically checked.

Type in “activityIndicator” here.

Make sure the Weak Storage type
is selected and click Connect.

Task 3

Task: Configure the View Controller that presents deal details.

19. The Table View Controller will pass the URL address corresponding
to the deal selected by the user to the Deal Details View Controller.
This View Controller should have a public NSURL @property that
can be set by the Table View Controller when the segue starts.

Let's declare this @property with the strong storage type and name
it dealURL.

20. Choose DealDetailsViewController.m in Assistant Editor and
@synthesize this property right after the @implementation
directive. Also rename it's instance variable to _dealURL.

21. It's a good time to also rename the instance variables of the
webView and activityIndicator @propertys by prefixing
them with underscore.

Look over the next slides for help.

Task 3

Task: Configure the View Controller that presents deal details.

22. Close the Utilities area.

23. Let's start loading the webpage in the viewWillAppear: method
that gets executed right before the View appears on screen.

 The first thing to do in the viewWillAppear: method is to clear the
previous webpage from the Web View. The Web View may have a
webpage loaded if we previously shown details about another deal.
We use some javascript code to clear it.

Right before loading the dealURL in our webView, we will tell the
activityIndicator to startAnimating the spinning wheel.

Then we load an NSURLRequest (that was initialized with the
dealURL) in the webView.

Look over the next slide for this method implementation.

We also have to send the
viewWillAppear: message

to our superclass.

This javascript code is used
to clear the Web View content
before it appears on screen.

The startAnimation method also
shows up the activityIndicator
(besides starting the animation) by
setting the hidden property to NO.

Task 3

Task: Configure the View Controller that presents deal details.

24. Next, we should implement the UIWebViewDelegate's methods.
When the Web View finishes loading the request with success, the
activityIndicator must stop the animation. Implement the
webViewDidFinishLoad: method to work as described.

25. If the Web View fails to load the request, we should display an Alert
View with an error message to the user in order to let him know
about the problem. Again, the activityIndicator must stop the
animation.

Implement the webView:didFailLoadWithError: method to work
as described above.

Note that we should stop loading the Web View's request and the
activityIndicator animation if the View goes off the screen.
This is left as an assignment.

Look over the next slide for the UIWebViewDelegate's methods
implementation.

Place the UIWebViewDelegate
methods in a section delimited

with a #pragma mark directive.

This alert will show up if the
Web View encounters an error

when loading the request.

The stopAnimation method also
hides the activityIndicator.

It sets the hidden property to YES.

Task 3

Task: Configure the View Controller that presents deal details.

26. The Deal Details View Controller is configured, but we still have to
pass the deal URL address when the Table View Controller performs
the segue.

Let's scroll to and click on the Table View Controller in Interface Builder.

27. Select the DealsTableViewController implementation file in
Assistant Editor.

28. Let's add a new section of code and name it “Storyboard segues”
using the #pragma mark compiler directive right before the
“NSURLConnection load callbacks” section.

29. We have a chance to pass the deal URL to the Deal Details View
Controller in the prepareForSegue:sender: method. Let's add
an implementation to this method in the “Storyboard segues”
section.

Look over the next slides to finish this method's implementation.

This is the segue that will be performed.
We can identify it through the
identifier @property.

Let's open Utilities area and look
for the segue identifier.

The sender is actually the
UITableViewCell that was
tapped by the user. We can
access the deal information
through the sender object.

We have already set the segue identifier
here. If you haven't done this, it is

necessary to type in the identifier now.

Click on the segue that goes
from the Table View Controller
to the Details View Controller.

Let's prepare for the “ShowDealDetails” segue.
Test if the segue has the right identifier first.

It's ok to close the Utilities area.

Cast the weakly typed object
 sender to a UITableViewCell.

We need the indexPath of this cell
in order to get the deal URL from

the sharedModel.

We obtain the URL as an NSString
from the deal NSDictionary at

indexPath.row.

We build an NSURL object
from that urlString.

After you build the NSURL
object scroll to the top of
the implementation file.

Then go back to the prepareForSegue:sender:
method to finish it's implementation.

Next, we are going to set the dealURL
@property of our destination View Controller.

The Table View Controller has to know about the
Deal Details View Controller, so let's #import
the “DealDetailsViewController.h” header here.

And set the dealURL
@property like this.

The segue contains the destinationViewController
that is going to appear on screen but it is statically typed to
UIViewController. This is ok since every View Controller
must be a subclass of UIViewController, but we would

get a warning if we try to access a @property (such as
dealURL) of our custom View Controller. This is why we

have to make a cast first.

Task 3

Task: Configure the View Controller that presents deal details.

30. Run the application in iOS Simulator. Try to view the details for a
few deals after the application loads them inside the Table View.

31. Unplug your Internet cable to test what happens when the device
has lost its Internet connection. Now try to view details about a
nearby deal.

An Alert View like the one from the next slide should appear on screen.
If you press the “Ok” button the Alert View is dismissed, but the Deal
Details View remains on screen.

There is no reason to let the Deal Details View on screen. The user's
only action is to go back from this View and maybe try to see details
about another deal. We can anticipate the user's action and
automatically put him back on the Table View when he presses the
“Ok” button.

32. Stop running the application and plug your Internet cable back.

Task 3

Task: Configure the View Controller that presents deal details.

33. Click on the Deal Details View Controller in Interface Builder to see
its associated files in Assistant Editor. Make sure the header file is
selected in Assistant Editor.

34. We can assign a delegate object to the UIAlertView that
shows the “Loading Problem” error message. The delegate object
will receive an event when the user presses the “Ok” button of the
Alert View. We want to pop our View Controller from the navigation
stack in this case.

We must declare the UIAlertViewDelegate protocol and set this
View Controller to be the Alert View delegate.

The next screenshot shows how to declare this @protocol.

Any object in Objective-C can
implement several protocols.
The protocols are given in a
comma separated list, after
the superclass declaration.

Task 3

Task: Configure the View Controller that presents deal details.

35. Select the DealDetailsViewController.m implementation file in
Assistant Editor.

36. Set the delegate object of the UIAlertView to self when you
initialize it in the webView:didFailLoadWithError: method.

37. Add a #pragma mark declaration for the methods of the
UIAlertViewDelegate protocol.

38. Implement the alertView:clickedButtonAtIndex: method
and pop the View Controller from the navigation stack. You have to
send the popViewControllerAnimated: message to the
self.navigationController object.

Look over the next screenshot for help.

Set the delegate to self here.

This method will get executed
when the user presses the

“Ok” button.

Task 3

Task: Configure the View Controller that presents deal details.

39. Run the application in iOS Simulator. Wait until the application
loads the nearby deals inside the Table View.

40. Unplug your Internet cable and try to view details about a deal.

The Alert View should appear on screen. If you press the “Ok” button
the Alert View is dismissed and the user is put back on the Table
View. The problem is fixed!

41. Stop running the application and plug your Internet cable again.

Assignment 1
Assignment: The Table View cells are very tight together. Set the cell

height to 70 pixels to add some white space and make them look
nice.

Hint: Open the Utilities area and select the Prototype Cell in Interface
Builder. Look for the Row Height property in Size Inspector. Note
that you have to check the “Custom” option.

Do the same thing for the Table View. It also has a Row Height property
that needs to be set.

Assignment 2
Assignment: Set the title of Deal Details View Controller to “Deal

Details”.

Hint: Do this in Interface Builder.

Assignment 3
Assignment: It would be nice to hide the bottom Tab Bar when the Deal

Details View Controller is pushed on screen.

Hint: Select the Deal Details View in Interface Builder. In Attributes
Inspector search for a property that suggests it would hide the Tab
Bar.

You can also solve this assignment programmatically by setting the
hidesBottomBarWhenPushed @property of the View Controller
when its View loads (i.e. in the viewDidLoad method).

Assignment 4
Assignment: Implement the viewDidDisappear: method of the Deal

Details View Controller so that it stops loading webpage requested
by the Web View.

Hint: Note that if you stop loading the request programmatically, you
also have to stop the animation of the Activity Indicator.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

