

Lab 4:
RPN Calculator App (3 of 3)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

1. Launch Xcode and go to “File > Open” and select the Xcode project
(.xcodeproj) inside the “Calculator(2of3)” folder.

2. You can run the application in iOS Simulator and take a look at the
new features from the last lab. Notice that we can now make
programs that accept variables. But what if we want to run the “x y
+” program again with different values for x and y. We cannot set
both variables without changing the program.

We should be able to set variables and keep the program in the stack.
And it would also be nice if we could see the program that we want
to run in some auxiliary display. We are going to address these
issues by completing this task.

3. Stop running the application.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

4. Notice that the methods that set the variables are not changing the
program. But we should be able to clear the display right after
setting a variable so that we can set another variable with a different
value. If we use the Clear button we also flush the current program.

We should separate the functionality of the Clear button. To do this, we
are going add another button.

Make room for this button by resizing the C button to 36 pixels wide
and the display to 192 pixels wide.

5. Open the Utilities area and drag a button from Object Library to your
View next to the C button.

6. Set the button title to “AC” and resize it to a width of 36 pixels. It
should look like in the following screenshot.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

7. CTRL-drag from the “AC” button in your View to your Controller
implementation right before the clearPressed method to add an
action.

8. Name the new action “allClearPressed” and make sure you select
None for Arguments.

9. Copy and paste the code from the clearPressed method. This is
exactly what allClearPressed should do.

10. Then delete the first line of code from the clearPressed method
that clears the program stack. The C button should only clear the
display.

Your Controller should look like in the following screenshot.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

11. It's time to add the auxiliary display that will show the current
program (or more exactly, what's in the program stack). We should
copy and paste the display label.

12. Place the copied UILabel right under the display label and
resize it to 280x21 pixels.

13. Change the Font to System 16.0.

14. Clear the text inside this UILabel.

Your View should look like in the following screenshot.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

15. Open the CalculatorViewController.h in Assistant Editor.

16. CTRL-drag from the UILabel to the header file to create an outlet.

17. Name the outlet “programDescription” and select the Weak Storage
for it.

The outlet should look like in the following screenshot.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

18. Open the CalculatorViewController.m in Assistant Editor.

19. We should update the programDescription each time we
change the program stack. The program stack changes only when
we push something to it (operands, variables and operations) and
when we clear the program stack. In each of these cases we should
simply send the descriptionOfProgram: message the
CalculatorBrain that will return an NSString with the program
description.

Don't worry about the errors. The next step will be to add the
descriptionOfProgram: method to the CalculatorBrain's public
API and implement it.

The Controller implementation should look like in the next screenshot.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

20. Switch to the CalculatorBrain.m in tab in Xcode.

21. Declare the public class method descriptionOfProgram: that
takes a program with the general type id and returns a pointer to
an NSString object.

22. Implement the method so that it returns the description of the
program into a NSString object. If the program is nil this
method should also return nil. The simplest way to implement this
method is to iterate through the program objects and append them
to an NSMutableString using the appendFormat: method. We
will have to use introspection again to distinguish between operands
(NSNumbers) and variables/operations (NSStrings).

The final CalculatorBrain implementation should look like in the next
screenshot.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

23. The only thing left to do is to add another button so that we can
“run” the current “program”. Switch to MainStoryboard.storyboard
tab in Xcode to add this final button.

24. Open the Utilities area.

25. Make room for the “run” button right under the π button. Resize the
x, y and z buttons to 64 pixels wide and align them nicely with the
buttons above.

26. Drag an UIButton from the Object Library to your View.

27. Set the button title to “Run” and resize it to 64 pixels wide.

Your final View should look like in the next screenshot.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

28. CTRL-drag from the “run” button in your View to the Controller
implementation right before the @end keyword to create an action
for this button.

29. Name the action “runPressed” and select None for Arguments.

30. The runPressed method is similar to operationPressed:, only
that we don't have to push any operation on the stack. If the user is
in the middle of entering a number that input will be cleared (not
pushed on the stack) and replaced with the result of running the
“program”. To let things work properly we also have to set the
userIsInTheMiddleOfEnteringANumber to NO.

Basically, we need to build the variableValues dictionary and send
the runProgram:usingVariableValues: message to the
CalculatorBrain. See how to implement the runPressed method in
the next screenshot.

Task 1

Task: Adjust the Calculator so that we can set variables without having
to change the program. Add a button so that we can re-run the
current program.

31. Run the application in iOS Simulator. Press 3 “set x” and C. Then
press 4 “set y” and C. Now let's try to run the sqrt(x * x + y * y)
equation. Press x x * y y * + sqrt to put this equation in the program
stack. Press Run and check that the result is 5 = sqrt(3 * 3 + 4 * 4).
Now press C 7 “set x” C 24 “set y” to change the values of x and y.
Press Run and check that the result is 25 = sqrt(7 * 7 + 24 * 24) this
time.

Now you can play with your calculator and solve equations!

Assignment 1

Assignment: Remember that you were advised to rename the instance
variable of a @property by prefixing it with underscore. You should
do this for the @synthesized properties in your project.

Hints: To rename the instance variable associated to a @property you
have to add “= _propertyName” in the @synthesize declaration
of that property.

Note that this will break the operationPressed: and runPressed
methods because we are not using the getters of xDisplay,
yDisplay and zDisplay outlets. You should fix this by using the
getters (call self.xDisplay instead of xDisplay).

It's very good if you noticed this issue right when we implemented the
operationPressed: and runPressed methods. This mistake
was left on purpose to show the importance of prefixing your
instance variables with underscore.

Assignment 2**

Assignment: Re-implement the descriptionOfProgram: method to
display the passed program in a more user-friendly manner.
Specifically,

a. It should display all single-operand operations using “function”
notation. For example, 10 sqrt should display as sqrt(10).

b. It should display all multi-operand operations using “infix” notation if
appropriate, else function notation. For example, 3 Enter 5 + should
display as (3 + 5).

c. Any no-operand operations, like π, should appear unadorned. For
example, π.

d. Variables should also appear unadorned. For example, x.

Any combination of operations, operands and variables should display
properly. It might be that there are multiple things on the stack. If so,
separate them by commas in the output with the top of the stack
first, for example 3 E 5 E would display as “5, 3”.

Assignment 2**

Hints: You will almost certainly want to use recursion to implement
descriptionOfProgram: (just like we did to implement
runProgram:). You might find it useful to write yourself a
descriptionOfTopOfStack: method too (just like we wrote
ourselves a popOperandOffStack: method to help us implement
runProgram:). If you find recursion a challenge, think “simpler”,
not “more complex”. Your descriptionOfTopOfStack: method
should be less than 20 lines of code and will be very similar to
popOperandOffStack:.

One of the things your descriptionOfProgram: method is going to
need to know is whether a given string on the stack is a two-operand
operation, a single-operand operation, a no-operand operation or a
variable (because it gives a different description for each of those
kinds of things).

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

1. Open the MainStoryboard.storyboard tab in Xcode.

2. Select the CalculatorViewController.m in Assistant Editor.

3. Implement the shouldAutorotateToInterfaceOrientation:
method so that your View will autorotate to all orientations besides
the portrait upside down orientation. You will have to return YES for
supported device orientations and NO for the portrait upside down
orientation. Place this method right after viewDidUnload:.

The implementation of this method can be viewed on the next slide.

4. Run the application in iOS Simulator and notice how the View
changes when you rotate the device. To change device orientations
on iOS Simulator use the CMD + Left Arrow or CMD + Right Arrow
shortcut keys (or look in the Simulator's Hardware menu for the
Rotate Left or Rotate Right options).

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

5. Stop running the application.

6. We must adjust the View so that it displays nicely in landscape mode
too.

Let's open the Utilities area.

7. Select the Size Inspector to set up springs and struts so that the
display and programDescription labels adjust their size to fit
the screen width.

The following screenshots will show you how to do this.

8. Run the application and check that the labels resize when you
change the device orientation.

9. Stop running the application.

Select the Size Inspector from here.

Make sure the display label is selected.

Set up springs and struts like this. It
means the display will keep its position

and it will resize horizontally on
autorotation.

Select the programDescription label.
Set up springs and struts

in a similar way for this label.

The run the application and change
the device orientation to landscape.

The view should look like this.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

10. We should adjust the buttons so that they fit inside the screen when
the device is in landscape mode. However, we would like to keep
the View unchanged when the device is in portrait mode.

We will divide the buttons and place them in two subviews. The first
subview will contain the first 4 by 4 buttons (that is the digit buttons,
“.”, “Enter”, “*”, “/”, “+” and “-”). This subview will display on the upper
side of the screen in portrait mode and on the left side of the screen
in landscape mode.

The second subview will contain all the other buttons and the labels
that display the x, y and z variables values. This subview will display
on the lower side of the screen in portrait mode and on the right side
of the screen in landscape mode.

Open the Document Outline in order to add and set these subviews
properly. Also expand the UIView to see our current view hierarchy.

Show and hide the

Document Outline from here.

Expand this to see our view hierarchy.
You will find all our labels and buttons

listed here.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

11. Drag and drop an UIView from the Object Library.

12. In Size Inspector set its frame to X=0, Y=273, Width=320 and
Height=186. Note that this is the second subview that will contain
the lower buttons.

13. Select the Attributes Inspector and set the Background to Clear
color. This means we want our subview to have a transparent
background. Deselect the Opaque checkbox (our view isn't opaque
anymore). Note that selecting Opaque for non-transparent or non-
translucent views is a performance optimization.

14. Make sure this subview is at the end of the view hierarchy. If not, in
Document Outline click and drag this subview to the end of the
hierarchy.

15. In Document Outline drag the lower buttons in the subview. You will
have to reposition each button to its original position.

Our subview is at the
end of the view hierarchy.
It should contain the lower

buttons and labels.

Our subview will become the
superview of this label when

you drag it here.

Click this label to select it. Then drag
it inside the subview. Notice the other
buttons and labels from the lower view

are already there.

Now reposition it to its original place.
You will have to do this for each

button and label.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

16. Select the CalculatorViewController.h in Assistant Editor.

17. CTRL-drag from this subview to your Controller interface to create
an outlet.

18. Name this outlet “lowerRightView” and select the Weak Storage for
it.

The next screenshot shows how this @property should look like.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

19. In Document Outline we should place the display and
programDescription labels at the beginning of the view
hierarchy.

20. Do the same thing for the “C” and “AC” buttons.

21. Drag another UIVew from the Object Library.

22. Make sure you place it before the lowerRightView in the view
hierarchy.

23. Select the Size Inspector and set the frame to X=0, Y=94,
Width=320 and Height=172.

It should look like in the next screenshot.

The display and programDescription
labels and the “C” and “AC” buttons are not

going to be added in the first subview.
This is why we placed them at the

top of the view hierarchy.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

24. Select the Attributes Inspector and set the Background to Clear
color. Also deselect the Opaque checkbox.

25. In Document outline drag the digit buttons and reposition them to
their original place. Do the same thing for “.”, “Enter” and the
remaining operation buttons.

26. Select the CalculatorViewController.h in Assistant Editor.

27. CTRL-drag from this subview to your Controller interface to create
an outlet.

28. Name this outlet “upperLeftView” and select the Weak Storage for
it.

Everything should look like as in the next screenshot.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

29. This is all we can do from Interface Builder to adjust our View for
different device orientations automatically. Next we are going to
resize the upperLeftView and the lowerRightView from code
so that the buttons inside them display nicely on all device
orientations. We can hide the Document Outline now.

30. Open the Controller's implementation file in Assistant Editor.

31. We should implement the method that is called from within the
animation block used to rotate the view:

willAnimateRotationToInterfaceOrientation:duration:

Add the implementation for this method right after the
shouldAutorotateToInterfaceOrientation: method.

32. Hold down the option key and click on the method signature to see
additional information about it.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

33. Now we need to adjust the View for every device orientation. Note
that there are four defined orientations that correspond to the four
general ways that the iPhone can be held:

 UIInterfaceOrientationPortrait
 UIInterfaceOrientationPortraitUpsideDown
 UIInterfaceOrientationLandscapeLeft
 UIInterfaceOrientationLandscapeRight

We will not support the portrait upside down orientation. We can also
group the landscape orientations because the View will be the same
for both landscape left and landscape right orientations.

Thus, we will have two different ways of displaying our View (portrait
and landscape). We only have to adjust the frame of the
upperLeftView and lowerRightView.

Make sure your code is similar to the code highlighted in the next
screenshot.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

34. Run the application in iOS Simulator. Notice that the buttons align
nicely on the landscape orientation, but they are too wide and still
don't fit on the screen (this time horizontally).

We need to solve this issue by rescaling the upperLeftView and
lowerRightView.

35. Stop running the application.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

36. UIView objects have a transform @property that enables us to
make affine transformations. Thus, we can translate, scale or rotate
the any view by setting its transform. The Core Graphics
framework has a few helper C functions that start with
CGAffineTransformMake... and allow us to quickly create
transformations (that are C structs, not Objective-C objects) from
scratch. There are also other helper functions to manipulate existing
transformations that have the CGAffineTransform... prefix.

We are going to use the CGAffineTransformMakeScale function to
rescale the upperLeftView and the lowerLeftView. We only
have to rescale them horizontally to 75% in landscape mode, but we
have to rescale them back to 100% on portrait mode. We also have
to transform the subviews before setting their frame (because
rescaling can modify the frame).

The next screenshot shows how your code should look like.

Task 2

Task: Allow your Calculator to display it's View in portrait and in
landscape mode using autorotation.

37. All done! Run the application in iOS Simulator and try different
device orientations. Your View should now look good in any device
orientation (portrait or landscape).

Also notice the automatic animation that iOS does for us when the
device orientation changes.

38. Stop running the application.

Task 3

Task: Add gestures for the most important actions of your Calculator.

1. We are going to add a swipe gesture recognizer for the Clear button
and a tap gesture recognizer for the Enter button.

Open the MainStoryboard.storyboard tab in Xcode.

2. Open the Object Library and select the List View. Search for a Swipe
Gesture Recognizer in the Object Library.

3. Drag a Swipe Gesture Recognizer over the View (make sure the
view highlights as in the next screenshot when you drag it).

4. Notice the Gesture Recognizer appears next to the
CalculatorViewController object in the bar placed right under the
View.

5. Right-click on the Gesture Recognizer and make sure that
gestureRecognizers in Referencing Outlet Collections is associated
with the View.

Drag the Swipe Gesture Recognizer from the Object Library to your View.

Make sure the View is highlighted.
This also creates an association between
the recognizer and your View. Basically,
we want to recognize gestures on the

entire screen.

Right-click here to see the
Swipe Gesture Recognizer

connections.

Note that it is connected
 to the View.

Task 3

Task: Add gestures for the most important actions of your Calculator.

6. Open Attributes Inspector in Utilities area.

7. Select the Swipe Gesture Recognizer.

8. We want to clear the display with a single swipe from left to right.
For this, we need to set the Swipe direction to Right.

9. Also make sure Touches (the number of fingers to make the gesture)
is 1.

Set Swipe direction to Right
from here.

The number of Touches
should be 1.

Task 3

Task: Add gestures for the most important actions of your Calculator.

10. We can now assign an action to the gesture recognizer. Make sure
CalculatorViewController.m is opened in Assistant Editor.

11. Scroll down to the bottom of the Controller's implementation (we
are going to add the action there).

12. CTRL-drag from the Swipe Gesture Recognizer to the Controller's
implementation right before @end.

CTRL-drag as you did with
the other objects in your

View.

Task 3

Task: Add gestures for the most important actions of your Calculator.

13. In the pop-up window that appears after CTRL-dragging set the
method's name to “handleSwipeToClear”.

14. Select UISwipeGestureRecognizer for the argument Type.

15. Click Connect.

16. In the implementation of the handleSwipeToClear: we are
going to simply send the clearPressed message on self.

The following two slides shows how to perform these steps.

Set the Name and Type
and then click Connect.

Task 3

Task: Add gestures for the most important actions of your Calculator.

17. In a similar way we are going to add a Tap Gesture Recognizer.
Search for a Tap Gesture Recognizer in Object Library and drag it to
your View. Again, make sure the entire View is highlighted when you
do this.

18. Notice the Tap Gesture Recognizer will be placed right next to the
Swipe Gesture Recognizer. Right-click on the Tap Gesture
Recognizer and check that the View is a referencing outlet for this
gesture recognizer.

19. We are going to assign a double tap gesture with two fingers for
Enter. Open Attributes Inspector in Utilities area.

20. Set up the recognizer so that it recognizes a double Tap gesture
with 2 Touches. The following slide shows how to set up the Tap
Gesture Recognizer.

Task 3

Task: Add gestures for the most important actions of your Calculator.

21. Let's assign an action to the gesture recognizer. CTRL-drag from
the Tap Gesture Recognizer to the Controller's implementation right
before @end.

22. In the pop-up window that appears after CTRL-dragging set the
method's name to “handleTapToEnter”.

23. Select UITapGestureRecognizer for the argument Type.

24. Click Connect.

25. In the implementation of the handleTapToEnter: we are going to
simply send the enterPressed message on self.

The following slide shows how to implement the handleTapToEnter:
method.

Task 3

Task: Add gestures for the most important actions of your Calculator.

26. Run the application in iOS Simulator. Type in 25 then double tap
anywhere on the screen with two fingers (make sure you don't press
any button by mistake) to Enter it in the program.

Then type 36 and press the “set x” button.

Swipe from left to right anywhere on the screen to clear the Calculator's
display. Then press x and +. You will get the result of 25 + x = 61.

Note that the gestures also work in landscape mode (especially the
swipe gesture).

All done! This is the final version of the RPN Calculator app.

Assignment 3

Assignment: Add another swipe gesture recognizer for the AC button. It
should recognize a gesture similar to the one used for the Clear
button only that it should be a swipe with two fingers.

Hints: You should drag this gesture recognizer for the Object Library.
Don't forget to set the number of Touches tot 2. Add an action for
this gesture recognizer and name it handleSwipeToClearAll:.
Call allClearPressed when the gesture is recognized.

Assignment 4

Assignment: Add a pinch gesture recognizer for the Run button. It
should recognize a pinch-close gesture.

Hints: You should drag the Pinch Gesture Recognizer for the Object
Library. Add an action for this gesture recognizer and name it
handlePinchToRun:. Call runPressed when the gesture is
recognized.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

