

Lab 3:
RPN Calculator App (2 of 3)

Developing Applications for iOS

Radu Ionescu
raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

Task 1

Task: Add the following 4 operation buttons: sin (calculates the sine of
the top operand on the stack), cos (calculates the cosine of the top
operand on the stack), sqrt (calculates the square root of the top
operand on the stack), π (calculates the value of π).

1. Launch Xcode and go to “File > Open” and select the Xcode project
(.xcodeproj) inside the “Calculator(1of3)” folder.

2. Run the application in iOS Simulator and give it a look. Notice the
clear button “C” and the floating point button “.” from assignments 1
and 2 in Lab 2. Type in 1.25 E 3.75 + (where E means Enter). The
result should be 5.0. Clear and compute 24 * 26.

3. Stop running the application.

4. Look for the clearPressed and pointPressed methods inside
CalculatorViewController.m to see how they are implemented.

Task 1

Task: Add the following 4 operation buttons: sin (calculates the sine of
the top operand on the stack), cos (calculates the cosine of the top
operand on the stack), sqrt (calculates the square root of the top
operand on the stack), π (calculates the value of π).

5. Add four more buttons for the sin, cos, sqrt and π operations. Place
them under the other buttons and align them to look nice. Note that
you should copy and paste an operation button since we want our
new operations to send the same operationPressed: action.

The next screenshot shows how your View should look like.

6. Switch to the CalculatorBrain.m tab.

We will modify the implementation of the performOperation:
method to also compute these new operations. Note that sin(),
cos() and sqrt() are functions in the normal BSD Unix C library.
Feel free to use them to calculate sine, cosine and squared root.

Task 1

Task: Add the following 4 operation buttons: sin (calculates the sine of
the top operand on the stack), cos (calculates the cosine of the top
operand on the stack), sqrt (calculates the square root of the top
operand on the stack), π (calculates the value of π).

7. Implement sin, cos and sqrt as unary operations.

8. Implement π as an operation which takes no arguments off of the
operand stack.

Take a look at the next screenshot to check that your code is ok.

9. Run the application and test the new operations. Type in π E 2 / sin.
The result should be 1.0 (that is sin(π/2)). Note that 3 π * should put
three times the value of π into the display on your calculator, so
should 3 E π *, so should π 3 *. Perhaps unexpectedly, π E 3 * +
would result in 4 times π being shown. You should understand this
is the case because π is an operation which takes no arguments off
of the operand stack, not a new way of entering an operand into the
display.

Task 2

Task: Extend the CalculatorBrain with the capacity to run programs.

1. This task requires a major revision of the CalculatorBrain. In order to
make our calculator run programs we have to add some public API
in the CalculatorBrain. We also have to allow operations to be
pushed and poped off the stack. Thus, we should rename the
operandStack to programStack. (don't worry about errors in the
CalculatorViewController at this time, we will solve them later).

2. Next, we need to add the public API needed to run programs. In
order to run a program we need two things: a copy of the program
stack that describes the program and a method that takes a program
stack and runs the program.

Let us declare a read-only public @property that returns a copy of the
programStack. Name this property program. The type of this
property should be id, since we want our CalculatorBrain internal
implementation of the “program” to be independent of the public API.

The next screenshot shows how to declare the program property.

The readonly @property will generate only the getter
method. Thus, you will not be able to set this property
through a setter method. In general, you can modify a
readonly property by accessing it's instance variable
from your implementation. By default properties are

readwrite, so you don't have to add this keyword explicitly.

Task 2

Task: Extend the CalculatorBrain with the capacity to run programs.

3. The value returned by the program @property is rather calculated
than stored (it's a copy of the programStack). Instead of using
@synthesize to generate the getter, we have to implement it
ourself.

Make sure you return a copy of the programStack and not directly
the programStack. Add this implementation after the
implementation of the programStack getter.

4. Now let us add the runProgram: method declaration (inside
CalculatorBrain.h) that runs programs. It should take an argument
with general type id that is a program. Notice that this method is
(and should be) independent of any CalculatorBrain instance. This is
why we should declare it as a class method.

The following screenshot shows how your code should look by now.

It is a common convention to add class method
declarations before instance methods.

Task 2

Task: Extend the CalculatorBrain with the capacity to run programs.

5. Implement the runProgram: method (inside CalculatorBrain.m) so
that it runs the program received as argument.

We should test if the program is an NSArray using introspection then
make a mutableCopy of it so that we can operate on the stack.

To operate on the stack we can use another recursive function that will
be very similar to the current performOperation: method, only
that it will take the mutable copy of the program. Let us name this
method popTermOffProgramStack: (we will implement it in a
second as a class method). Note that we cannot call instance
methods from inside class methods.

The following screenshot shows how your code should look by now.
Note that sending the popTermOffProgramStack: message to
the CalculatorBrain class generates an error since we haven't
implemented it.

This method is not implemented yet. Note that
 self means the CalculatorBrain class here.

Task 2

Task: Extend the CalculatorBrain with the capacity to run programs.

6. First we should declare the popTermOffProgramStack: method
as a private class method (inside CalculatorBrain.m).

The argument of this method is an NSMutableArray that is a (or a
part of a) program stack.

The next screenshot shows how popTermOffProgramStack:
declaration should look like.

Note that you could directly implement this method (and any “private”
method in general) without declaring it in the interface, but you
would have to add the implementation before any other method that
calls it. Otherwise you will get compiler errors for every call that
precedes the method's implementation. To avoid this problem it is
better to declare it in the Class Extension.

Task 2

Task: Extend the CalculatorBrain with the capacity to run programs.

7. We should implement the popTermOffProgramStack: method
(inside CalculatorBrain.m) as a class method.

Because this method is very similar to the performOperation:
instance method we are going to copy and paste the code from this
method.

The method should work like this: we pop a term of the stack and we
test whether it is an operand (NSNumber) or operation (NSString)
using introspection. For operands we simply return the
doubleValue, while for operations we do the appropriate action.
Instead of calling popOperand instance method as in the
performOperation: method, we should recursively call
popTermOffProgramStack: to pop terms off the program stack.

The next screenshot shows how popTermOffProgramStack: should
look like.

Task 2

Task: Extend the CalculatorBrain with the capacity to run programs.

8. We should change the performOperation: implementation to
only push operations on the stack. Thus, we should rename it to
pushOperation:. The method should return void since we don't
need to return the result of the current operation anymore. Now we
do this by “running” the Calculator's program using runProgram:.

To add the operation on the stack we simply call addObject: on
the programStack (the same thing we do when we push
operands). Note that operations are NSString objects and
operands are NSNumber objects. We actually used this difference to
determine whether we have an operand or an operation using
introspection in the popTermOffProgramStack: method.

The next screenshot shows how the new pushOperation:
implementation should look like.

9. We no longer need the popOperand method so we can delete it.

Task 2

Task: Extend the CalculatorBrain with the capacity to run programs.

10. Update the CalculatotViewController to use the new methods
defined by the CalculatorBrain Model.

First we need to update the clearPressed method that calls
emptyOperandStack instead of emptyProgramStack.

11. Next we should update the operationPressed: method that
calls performOperation: instead of the new pushOperation:
method.

We also need to get the result of the current operation (since
pushOperation: doesn't return it anymore). In order to do this we
need to use the runProgram: class method. Note that we use the
class method class to get the Class of the self instance object.

The next screenshot shows how your Controller should look like.

12. Run the application in iOS simulator and check that it works the
same as before.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

1. Go to the MainStoryboard.storyboard tab in Xcode.

2. Open the Utilities area.

3. You will need new public API in your CalculatorBrain to support this
new feature, but let us focus on the variables first.

A variable will be specified as an NSString object. It will be pushed on
the stack as other double operands. The value of the variable will
be used when we “run” the program.

To simplify our implementation, we will define only three variables x, y
and z. We have to define three buttons to set the value of these
variables and three buttons that will let us introduce variables in the
“program”.

Add an UIButton from the Object Library and place it under the other
Calculator's buttons.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

4. Resize it to 88 pixels wide.

5. Copy and paste this button 5 times and place them on two rows (3
buttons per row).

6. Set their title to “x”, “y”, “z”, “set x”, “set y”, “set z”, respectively.

7. We should also use three displays that will show the current value of
x, y and z variables, respectively.

The easy way to do this is to copy the display label three times and
resize the copies to 88 pixels wide.

Your View should now be similar to the one presented in the next
screenshot.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

8. Open CalculatorViewController.h in Assistant Editor.

9. CTRL-drag from the first label in your View to you Controller header
to add an outlet for that UILabel. Name this outlet “xDisplay”. Make
sure you add it as a weak @property.

10. Do the same thing for the other two labels. Name them “yDisplay”
and “zDisplay” respectively.

The next screenshot shows how your Controller's header should look
like.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

11. Next we should add the actions for the “set” buttons. Open
CalculatorViewController.m in Assistant Editor.

12. CTRL-drag from the “set x” button to your Controller's
implementation to associate an action for this button.

13. Name the action “setX” and make sure you select None for
Arguments.

14. In a similar way add two more actions for the “set y” and “set z”
buttons. Name the actions “setY” and “setZ”, respectively.

The next screenshot gives you a hint of how your Controller's
implementation should look like.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

15. To set the x variable we simply copy the current display text and
set it to the xDisplay text. Make sure you use dot notation for the
xDisplay setter.

Also do NOT try to copy the display label itself and assign it to
xDisplay. Doing so will replace the xDisplay outlet with the
display outlet. Thus, we will have no way to reach the label for the
x variable. The point is we only need the text inside the display
UILabel.

16. Implement the setY and setZ methods in a similar way.

The next screenshot shows how the setX, setY and setZ methods
should be implemented.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

17. Next we should add the actions for the “x”, “y” and “z” buttons.

CTRL-drag from the “x” button to your Controller's implementation to
associate an action for this button. Place this method before the
operationPressed: method.

18. Name the action “variablePressed” and make sure you select
Sender for Arguments.

19. Using CTRL-drag from the “y” and “z” buttons you can associate
the same variablePressed: action. This works only if you save
the Controller first (use CMD + S to do this).

20. Change the sender type to be UIButton * instead of id.

The next screenshot gives you a hint about how your Controller's
implementation should look like by now.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

21. Next we should implement the variablePressed: action. It
works pretty much the same as the operationPressed: method.

If the user is in the middle of entering a number we should press
ENTER (by calling enterPressed) before adding the variable on
the stack.

We need to get the variable name by looking at the sender's
currentTitle. After this, we can push the variable on the stack
using the pushVariable: method of the brain. We are going to
add this method to our Model in a minute.

Then we have to put the variable name in the display.

See how to implement this method on the next screenshot.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

22. Open the CalculatorBrain.m tab in Xcode and let's add the
pushVariable: method.

23. First we should declare it in the public API of the CalculatorBrain.

24. The implementation of the method is identical to the
pushOperation: implementation. We simply add the variable to
the programStack with the addObject: method.

See how to declare and implement this method on the next screenshot.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

25. Now we can add variable to the program, but we have to find a way
to supply the values of the variables when the “program” is “run.” We
must add a new version of the runProgram: class method with the
following signature:

+ (double)runProgram:(id)program
 usingVariables:(NSDictionary *)variableValues;

The keys in the passed variableValues dictionary are NSString
objects corresponding to the names of variables, and the values in
the dictionary are NSNumber objects specifying the value of the
corresponding variable.

See how to declare this method on the next screenshot.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

26. It is time to add a private helper class method isOperation: that
is useful in distinguishing between variables and operations in our
implementation of runProgram:usingVariableValues:.

Declare this method in the private Class Extension.

27. To implement the isOperation: method we will use the
@"+,-,/,*,sin,cos,sqrt,� " constant string (that enumerates
all operations) to search for the given operation. The method will
return NO if the location of the operation in the constant string is
NSNotFound and YES otherwise.

See how to this method should look like on the next screenshot.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

28. We can implement runProgram:usingVariableValues:
without modifying the method popOperandOffStack: at all.

We have to iterate through the programStack objects and detect the
variables (that are NSString objects) using introspection. Because
operations are also NSStrings, we have to check that
isOperation: method returns NO before we can replace the
variable name in the programStack with the corresponding values
from the variableValues dictionary.

In this case it is very useful to use the NSMutableArray method
replaceObjectAtIndex:withObject:. Note that you cannot
call this method inside a for-in type of enumeration (since you
don’t have the index in that case): you would need a for loop that is
iterating by index through the array.

See how to implement this method on the next screenshot.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

29. We can now use the new method to run programs that takes an
NSDictionary of variables with associated values.

Return to the MainStoryboard.storyboard tab in Xcode to change the
operationPressed: method.

30. We have to build a dictionary with the variable names (as keys) and
and associated values. The NSDictionary class method
dictionaryWithObjectsAndKeys: is great for this task. It takes
a nil-terminated list of objects and keys separated by comma.

31. We can send the runProgram:usingVariableValues:
message to the CalculatorBrain class and pass the previously
created dictionary for the second argument.

The next screenshot shows how the new operationPressed:
implementation should look like.

Task 3

Task: Add the capability to your CalculatorBrain to accept variables as
operands (in addition to still accepting doubles as operands).

32. Run the application in iOS Simulator and use the new features.
Press 36 then “set x”. Press C 25 then “set y”. Press C x y +. The
calculator should display 61 (that is 36 + 25). Notice we don't have
to press Enter after we add a variable.

It's great! We can now make programs that accept variables. But what
if we want to run the “x y +” program again with different values for x
and y. We cannot set both variables without changing the program.
Of course, we could set x and y to the new values and then retype
the “x y +” program. This would work, but it's not right!

We should be able to set variables and keep the program in the stack.
And it would also be nice if we could see the program that we want
to run in some auxiliary display.

We are going to address these issues in the next lab.

Assignment 1

Assignment: Adjust the CalculatorBrain runProgram: class method
so that is runs programs with variables. Each variable should be
replaced with zero for this method. Test this method by placing it in
the operationPressed: method instead of the method that “runs”
“programs” using the actual variable values.

Hints: There are two options for this assignment. You can either call the
runProgram:usingVariables: and pass nil instead of a
dictionary with variable values, or you can iterate through the stack
objects and replace all variables with zero.

You would have to use [NSNumber numberWithDouble:0] in the
latter case.

Assignment 2

Assignment: Note that the pushOperation: and pushVariable:
methods in CalculatorBrain do the same thing. You should replace
them with a single method called pushOperationOrVariable:.

Hint: You would also have to change the variablePressed: and
operationPressed: to push things on the stack using the new
pushOperationOrVariable: method.

Congratulations!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

